Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825138

RESUMO

Products of lipolysis released during digestion positively affect the metabolism of newborns. In contrast to the 3-layer biological membranes covering human milk (HM) fat, the lipid droplets in infant milk formula (IMF) are covered by a single membrane composed of casein and whey proteins. To reduce the differences in lipid structure between IMF and HM, studies have used milk fat globule membrane (MFGM) components such as milk polar lipids (MPL) to prepare emulsions mimicking HM fat globules However, few studies have elucidated the effect of membrane proteins (MP) on lipid digestion in infants. In this study, 3 kinds of emulsions were prepared: One with MPL as the interfaced of lipid droplets (RE-1), one with membrane protein concentrate (MPC) (RE-2) as the interface of lipid droplets, and one with both MPL and MPC (1:2) as the co-interface of lipid droplets (RE-3). The interfacial coverage of the emulsions was confirmed by measuring the contents of MPL and MPC at the lipid droplet interface, and by confocal laser scanning microscopy analyzed. By controlling the homogenization intensity, the specific surface area of lipid droplets was controlled at the same level among the 3 emulsions. The stability constants of the emulsions varied, and RE-1 was the most stable. During simulated in vitro infant gastrointestinal digestion, the amount of free fatty acids (FFA) released from the lipid droplets was significantly higher from those with MPC at the interface (RE-2, RE-3) than from that with MPL at the interface (RE-1). The amount of FFA released at the end of intestinal digestion of RE-1, RE-2, and RE-3 was 255.00 ± 3.54 µmol,328.75 ± 5.30 µmol, 298.50 ± 9.19 µmol, respectively. Compared with the lipid droplets in RE-2, those with MPL at the interface (RE-1, RE-3) released more unsaturated fatty acids (USFAs) during digestion. The emulsifying activity index was highest in RE-3 (MPL and MPC co-interface). The presence of MPL at the emulsion interface increased the release of USFAs, while the presence of MPC increased the release of FFA. These results show that both MPL and MP are indispensable in the construction of MFGM. Understanding their effects on digestion can provide new strategies for the development of infant foods.

2.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894898

RESUMO

High glucose levels can lead to the apoptosis of islet ß cells, while autophagy can provide cytoprotection and promote autophagic cell death. Vitamin B12, a water-soluble B vitamin, has been shown to regulate insulin secretion and increase insulin sensitivity. However, the precise mechanism of action remains unclear. In this study, we investigated the influence of vitamin B12 on high glucose-induced apoptosis and autophagy in RIN-m5F cells to elucidate how vitamin B12 modulates insulin release. Our results demonstrate that exposure to 45 mM glucose led to a significant increase in the apoptosis rate of RIN-m5F cells. The treatment with vitamin B12 reduced the apoptosis rate and increased the number of autophagosomes. Moreover, vitamin B12 increased the ratio of microtubule-associated protein 1 light chain 3 beta to microtubule-associated protein 1 light chain 3 alpha (LC3-II/LC3-I), while decreasing the amount of sequestosome 1 (p62) and inhibiting the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under both normal- and high-glucose conditions. The additional experiments revealed that vitamin B12 inhibited high glucose-induced apoptosis. Notably, this protective effect was attenuated when the autophagy inhibitor 3-methyladenine was introduced. Our findings suggest that vitamin B12 protects islet ß cells against apoptosis induced by high glucose levels, possibly by inducing autophagy.


Assuntos
Glucose , Vitamina B 12 , Vitamina B 12/farmacologia , Glucose/farmacologia , Autofagia , Apoptose , Proteínas Associadas aos Microtúbulos/metabolismo
3.
J Dairy Sci ; 104(3): 2855-2865, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33455801

RESUMO

Aroma is an important property of fermented milk, and it directly affects consumer acceptance. However, previous studies have mainly focused on analyzing the composition of aroma compounds in fermented milk in vitro, and the composition may be different from the real aroma composition that stimulates the sense of smell. Furthermore, the relationship between olfactory attributes and the release of aroma compounds was not fully understood. In this study, we selected 6 samples of fermented milk differing in aroma perception intensity based on our pretest. A descriptive sensory analysis focusing on orthonasal and retronasal olfaction of fermented milk was first conducted by semitrained panelists. Artificial saliva was mixed with the fermented milk samples and continuously stirred at 37°C for 15 s to simulate oral processing conditions. Headspace solid-phase microextraction-gas chromatography coupled with quadrupole time-of-flight mass spectrometry was applied to identify the head space composition of 6 kinds of fermented milk before and after the simulated oral processing. Twenty-five volatile compounds were identified in the fermented milks, 15 of which were predicted to have an influence on the olfactory perception of fermented milks during oral processing. Partial least squares regression analysis based on chemical and sensory data was then applied to explore the correlation between sensory perception and volatile aroma release. The results showed that oral processing greatly increased the perception of creamy aroma compounds, such as diacetyl and acetone, but did not increase the perception of dairy sour aroma compounds, such as butanoic acid and hexanoic acid. This study can help improve our understanding of the relationship between olfactory perceptions and the release of volatile aroma compounds under oral processing. It might also contribute to the design of palatable fermented milks catering to specific consumer preferences.


Assuntos
Percepção Olfatória , Compostos Orgânicos Voláteis , Animais , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Odorantes/análise , Olfato , Paladar , Compostos Orgânicos Voláteis/análise
4.
Stem Cells ; 34(5): 1310-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26930448

RESUMO

Retaining muscle stem satellite cell (SC) quiescence is important for the maintenance of stem cell population and tissue regeneration. Accumulating evidence supports the model where key extracellular signals play crucial roles in maintaining SC quiescence or activation, however, the intracellular mechanisms that mediate niche signals to control SC behavior are not fully understood. Here, we reported that KLF7 functioned as a key mediator involved in low-level TGF-ß signaling and canonical Notch signaling-induced SC quiescence and myoblast arrest. The data obtained showed that KLF7 was upregulated in quiescent SCs and nonproliferating myoblasts. Silence of KLF7 promoted SCs activation and myoblasts proliferation, but overexpression of KLF7 induced myogenic cell arrest. Notably, the expression of KLF7 was regulated by TGF-ß and Notch3 signaling. Knockdown of KLF7 diminished low-level TGF-ß and canonical Notch signaling-induced SC quiescence. Investigation into the mechanism revealed that KLF7 regulation of SC function was dependent on p21 and acetylation of Lys227 and/or 231 in the DNA binding domain of KLF7. Our study provides new insights into the regulatory network of muscle stem cell quiescence. Stem Cells 2016;34:1310-1320.


Assuntos
Ciclo Celular , Espaço Extracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Acetilação , Sequência de Aminoácidos , Animais , Pontos de Checagem do Ciclo Celular , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/química , Camundongos , Desenvolvimento Muscular , Receptores Notch/metabolismo , Ativação Transcricional/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
5.
J Sci Food Agric ; 97(13): 4571-4579, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28345137

RESUMO

BACKGROUND: Tenderness is considered to be the most important quality characteristic of meat as it is the main cause of unacceptability of meat. Post-translational modification regulates protein functions that involve in postmortem changes in muscle and meat quality formation. Specifically, phosphorylation was proved to regulate postmortem glycolytic rates and meat tenderisation. However, the relationship between protein phosphorylation and meat tenderness remains unclear. This study examined the phosphoproteomes found in ovine muscle with different degrees of tenderness over time (at 0.5 h, 4 h, and 24 h postmortem). RESULTS: This study detected five, eight and nine phosphoprotein spots (>two-fold change, P < 0.05) at each respective time point. The different phosphoproteins found included glyceraldehyde-3-phosphate dehydrogenase, tropomyosin α-1 chain, pyruvate kinase, myosin binding protein H, glycogen phosphorylase, α-actinin-3, and an uncharacterised protein (GN, myosin-binding protein C2, MYBPC2). Most of the different phosphoproteins maintained sarcomeric functions, or were involved in glycometabolism. CONCLUSION: Phosphorylation levels of multiple proteins that are involved in glycolysis, muscle contraction or sarcomeric structure integrity were identified in ovine muscles with different tenderness. The differential phosphorylation of these proteins explains in part the difference in meat tenderness. © 2017 Society of Chemical Industry.


Assuntos
Carne/análise , Proteínas Musculares/química , Músculo Esquelético/química , Fosfoproteínas/química , Animais , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Mudanças Depois da Morte , Proteoma/química , Proteoma/metabolismo , Ovinos
6.
Asian-Australas J Anim Sci ; 30(6): 857-864, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27809464

RESUMO

OBJECTIVE: The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK) activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. METHODS: A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-ß-D-ribofuranoside (AICAR, a specific activator of AMPK), AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II) and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases). After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. RESULTS: Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. CONCLUSION: Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.

7.
Dev Biol ; 397(1): 31-44, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25236433

RESUMO

Extraocular muscles (EOMs) are highly specialized skeletal muscles that originate from the head mesoderm and control eye movements. EOMs are uniquely spared in Duchenne muscular dystrophy and animal models of dystrophin deficiency. Specific traits of myogenic progenitors may be determinants of this preferential sparing, but very little is known about the myogenic cells in this muscle group. While satellite cells (SCs) have long been recognized as the main source of myogenic cells in adult muscle, most of the knowledge about these cells comes from the prototypic limb muscles. In this study, we show that EOMs, regardless of their distinctive Pax3-negative lineage origin, harbor SCs that share a common signature (Pax7(+), Ki67(-), Nestin-GFP(+), Myf5(nLacZ+), MyoD-positive lineage origin) with their limb and diaphragm somite-derived counterparts, but are remarkably endowed with a high proliferative potential as revealed in cell culture assays. Specifically, we demonstrate that in adult as well as in aging mice, EOM SCs possess a superior expansion capacity, contributing significantly more proliferating, differentiating and renewal progeny than their limb and diaphragm counterparts. These robust growth and renewal properties are maintained by EOM SCs isolated from dystrophin-null (mdx) mice, while SCs from muscles affected by dystrophin deficiency (i.e., limb and diaphragm) expand poorly in vitro. EOM SCs also retain higher performance in cell transplantation assays in which donor cells were engrafted into host mdx limb muscle. Collectively, our study provides a comprehensive picture of EOM myogenic progenitors, showing that while these cells share common hallmarks with the prototypic SCs in somite-derived muscles, they distinctively feature robust growth and renewal capacities that warrant the title of high performance myo-engines and promote consideration of their properties for developing new approaches in cell-based therapy to combat skeletal muscle wasting.


Assuntos
Distrofina/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/embriologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células-Tronco/citologia , Animais , Linhagem da Célula , Proliferação de Células , Separação Celular , Transplante de Células , Modelos Animais de Doenças , Distrofina/deficiência , Extremidades/embriologia , Feminino , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Distrofia Muscular de Duchenne/genética
8.
J Sci Food Agric ; 96(5): 1474-83, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25950868

RESUMO

BACKGROUND: Tenderness is one of the most important quality attributes especially for beef and lamb. As protein phosphorylation and dephosphorylation regulate glycolysis, muscle contraction and turnover of proteins within living cells, it may contribute to the conversion of muscle to meat. The changes of myofibrillar protein phosphorylation in post-mortem ovine muscle with different levels of tenderness were investigated in this study. RESULTS: The protein phosphorylation level (P/T ratio) of the tender group increased from 0.5 to 12 h post mortem and then decreased. The P/T ratio of tough group increased during 24 h post mortem, increasing faster from 0.5 to 4 h post mortem than from 4 to 24 h post mortem.The global phosphorylation level of tough meat was significantly higher than tender meat at 4, 12 and 24 h post mortem (P < 0.05). Protein identification revealed that most of the phosphoproteins were proteins with sarcomeric function; the others were involved in glycometabolism, stress response, etc. The phosphorylation levels of myofibrillar proteins, e.g. myosin light chain 2 and actin, were significantly different among groups of different tenderness and at different post-mortem time points (P < 0.05). CONCLUSION: Protein phosphorylation may influence meat rigor mortis through contractile machinery and glycolysis, which in turn affect meat tenderness.


Assuntos
Bovinos , Carne/análise , Proteínas Musculares/metabolismo , Miofibrilas/química , Mudanças Depois da Morte , Ovinos , Actinas/metabolismo , Animais , Fenômenos Químicos , Músculo Esquelético/química , Miofibrilas/ultraestrutura , Cadeias Leves de Miosina/metabolismo , Fosforilação
9.
J Sci Food Agric ; 96(6): 2033-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26085314

RESUMO

BACKGROUND: Myosin is the major functional protein in muscle foods for water retention, protein binding/gelation and fat holding/emulsification. To maximize its functionality, myosin needs to be released from thick filaments. Understanding of the mechanism controlling myosin extraction will help improve quality traits of meat products. RESULTS: The data obtained show that actomyosin binding is the rate-limiting constraint for myosin release in rigor condition. Magnesium pyrophosphate (MgPPi) increased myosin extraction by weakening actomyosin interaction and maximized myosin extraction at 0.4 mol L(-1) NaCl, which was not attained at 1.0 mol L(-1) NaCl in the absence of PPi. Interaction between myosin rod domains is another critical constraint for myosin extraction, which is, rather than PPi, salt dependent. Further, our data suggest that MyBP-C (myosin binding protein C) and M-line might not be of significance in the process of NaCl-induced myosin extraction, though further study was needed. CONCLUSION: Our study provides new insight into the mechanism that controls myosin extraction from intact sarcomere, which could be applied to maximize myosin function and to improve meat quality in practice.


Assuntos
Difosfatos/química , Proteínas Musculares , Miofibrilas/química , Miosinas/química , Cloreto de Sódio/química , Animais , Bovinos
10.
J Cell Physiol ; 230(5): 1003-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25200835

RESUMO

MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate the stability or translation of cognate mRNAs at the post-transcriptional level. Accumulating evidence indicates that miRNAs play important roles in many aspects of muscle function, including muscle growth and development, regeneration, contractility, and muscle fiber type plasticity. In the current study, we examined the function of miR-151-3p in myoblast proliferation and differentiation. Results show that overexpression of miR-151-3p not only upregulates myoblast proliferation, but also decreases slow muscle gene expression (such as MHC-ß/slow and slow muscle troponin I) in both C2C12 myotubes and in primary cultures. Alternatively, inhibition of miR-151-3p by antisense RNA was found to upregulate MHC-ß/slow expression, indicating that miR-151-3p plays a role in muscle fiber type determination. Further investigation into the underlying mechanisms revealed for the first time that miR-151-3p directly targets ATP2a2, a gene encoding for a slow skeletal and cardiac muscle specific Ca(2+) ATPase, SERCA2 thus downregulating slow muscle gene expression. Mechanisms by which the alteration in SERCA2 expression induces changes in other slow muscle gene expression levels needs to be defined in future research.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Células Musculares/metabolismo , Fibras Musculares de Contração Lenta/citologia , Fibras Musculares de Contração Lenta/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Adenoviridae/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Mioblastos , Cadeias Pesadas de Miosina/metabolismo , Especificidade de Órgãos/genética , RNA Interferente Pequeno/metabolismo
11.
Biochem Biophys Res Commun ; 458(3): 449-455, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25637528

RESUMO

Dysregulation of lipid metabolism has been believed to be central in the development of skeletal muscle insulin resistance. Since first being described in 1989, the role of AMPK in energy metabolism, especially its role in lipid metabolism in skeletal muscle has been well studied. However, some recent literature report that fatty acid oxidation in skeletal muscle is not directly associated with AMPK activation and ACC phosphorylation. To further understand the role of AMPK in lipid metabolism and the development of induced obesity and insulin resistance, muscle specific AMPKα2 knockout mice (mAMPKα2-KO) was employed in this study. The results showed that AMPKα2 ablation in muscle did not exacerbate high fat diet induce obesity in mice. On the contrary, it improved animal glucose tolerance and insulin sensitivity, with reduced triglyceride content in skeletal muscle and fat mass in various adipose tissues, when mice were fed high fat diet for 14 weeks. Gene expression analysis revealed that AMPKα2 knockout up-regulated the expression of genes related to lipid catabolism and down-regulated that of genes related to triglyceride synthesis. More importantly, ablation of AMPKα2 altered the expression of several myokines related to adipogenesis and muscle regeneration. Our data suggest that defect in AMPKα2 signaling does not necessarily lead to the development of muscle insulin resistance and obesity. AMPKα2 may regulate whole body lipid metabolism by regulating myokine secretion.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Músculos/enzimologia , Obesidade/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Deleção de Genes , Regulação da Expressão Gênica , Resistência à Insulina , Camundongos , Camundongos Knockout , Músculos/metabolismo , Obesidade/genética , Obesidade/metabolismo
12.
Biochem Biophys Res Commun ; 446(4): 1231-6, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24680826

RESUMO

A comprehensive understanding of genetic and environmental factors that control skeletal muscle fiber type specification and transformation is essential not only in sports science, but also in myopathy and metabolic disorders. Krüppel-like factors (KLFs) are a subfamily of the zinc-finger class of transcription factors, which are involved in the development, homeostasis, and pathology of cardiovascular systems. Compared to cardiac and smooth muscles, the role of KLFs in skeletal muscle is much less understood. In this study, the endogenous expression of KLF15 was analyzed in differentiating C2C12 muscle cells and mouse skeletal muscle. Our data indicated that Klf15 was upregulated during myogenic differentiation and higher levels of Klf15 mRNA were detected in mouse slow, oxidative soleus muscle (SL) compared to that in fast, glycolytic tibialis anterior muscle (TA), indicating that KLF15 may play a role in myogenesis or myofiber typing. Additional studies revealed that KLF15 regulated the expression of MHC-ß/slow rather than muscle cell differentiation. Gene silencing, overexpression, and luciferase reporter assay showed that KLF15 regulated MHC-ß/slow by binding to Nfatc1 promoter, inducing its activity, therefore mediating calcineurin/NFAT signaling. Our study contributed to the current knowledge on KLFs in skeletal muscle, and it indicated a need for further intensive studies on the redundant and divergent functions of KLFs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Fatores de Transcrição NFATC/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Fatores de Transcrição/genética
13.
Protein J ; 43(2): 351-361, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605203

RESUMO

It is well known that preslaughter (antemortem) stress such as rough handling, transportation, a negative environment, physical discomfort, lack of consistent routine, and bad feed quality has a big impact on meat quality. The antemortem-induced poor meat quality is characterized by low pH, a pale and exudative appearance, and a soft texture. Previous studies indicate that antemortem stress plays a key role in regulating protein acetylation and glycolysis in postmortem (PM) muscle. However, the underlying molecular and biochemical mechanism is not clearly understood yet. In this study, we investigated the relationship between antemortem and protein acetylation and glycolysis using murine longissimus dorsi muscle isolated from ICR mice and murine muscle cell line C2C12 treated with epinephrine hydrochloride. Because adrenaline secretion increases in stressed animals, epinephrine hydrochloride was intraperitoneally injected epinephrine into mice to simulate pre-slaughter stress in this study to facilitate experimental operations and save experimental costs. Our findings demonstrated that protein acetylation in pyruvate kinase M1 (PKM1) form is significantly reduced by antemortem, and the reduced acetylation subsequently leads to an increase in PKM1 enzymatic activity which causes increased glycolysis in PM muscle. By using molecular approaches, we identified lysine 141 in PKM1 as a critical residue for acetylation. Our results in this study provide useful insight for controlling or improving meat quality in the future.


Assuntos
Glicólise , Camundongos Endogâmicos ICR , Músculo Esquelético , Piruvato Quinase , Animais , Glicólise/efeitos dos fármacos , Camundongos , Piruvato Quinase/metabolismo , Acetilação , Músculo Esquelético/metabolismo , Músculo Esquelético/enzimologia , Linhagem Celular , Estresse Fisiológico , Epinefrina/metabolismo
14.
Anim Biosci ; 37(4): 697-708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37946427

RESUMO

OBJECTIVE: The objective of this study was to investigate the influence of dietary supplementation of Eucommia ulmoides leaf extract (ELE) on muscle metabolism and meat quality of pigs with and without pre-slaughter transportation. METHODS: In a 43-day feeding experiment, a total of 160 pigs with an initial body weight 60.00±2.00 kg were randomly assigned into four groups in a completely randomized design with 10 replicates. Pigs in groups A and C were fed a basal diet and pigs in groups B and D were fed a basal diet supplemented with 0.5% ELE. Pigs were slaughtered with (group B and D) or without (group A and C) pre-slaughter transport. Muscle chemical composition, postmortem glycolysis, meat quality and muscle metabolome were analyzed. RESULTS: Dietary ELE supplementation had no effect on the proximate composition of porcine muscle, but increased free phenylalanine, proline, citruline, norvaline, and the total free amino acids in muscle. In addition, dietary ELE increased decanoic acid and eicosapentaenoic acid, but decreased heptadecanoic acid, oleic acid, trans-oleic acid, and monounsaturated fatty acids in muscle. Meat quality measurement demonstrated that ELE improved meat water holding capacity and eliminated the negative effects of pre-slaughter transport on meat cooking yield and tenderness. Dietary ELE reduced muscle glycolytic potential, inhibited glycolysis and muscle pH decline in the postmortem conversion of muscle to meat and increased the activity of citrate synthase in muscle. Metabolomics analysis by liquid chromatographic tandem mass spectrometric showed that ELE enhanced muscle energy level, regulated AMP-activated protein kinase (AMPK) signaling, modulated glycogenolysis/glycolysis, and altered the metabolism of carbohydrate, fatty acids, ketone bodies, amino acids, purine, and pyrimidine. CONCLUSION: Dietary ELE improved meat quality and alleviated the negative effect of preslaughter transport on meat quality by enhancing muscle oxidative metabolism capacity and inhibiting glycolysis in postmortem muscle, which is probably involved its regulation of AMPK.

15.
Poult Sci ; 103(8): 103789, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38833740

RESUMO

This study aimed to improve the eating quality of yellow-feathered broiler chicks by feeding them corn-soybean meal diets supplemented with 250, 500, and 1,000 mg/kg quercetin. we examined the impact of varying doses of dietary quercetin on the sensory quality of chicken breast meat as well as on the antioxidant enzymes, antioxidant-related signaling molecules, structure and thermal stability of myofibrillar protein (MPs), and microstructure of myogenic fibers in the meat during 24 h of postslaughter aging. Additionally, we investigated the potential correlations among antioxidant capacity, MP structure, and meat quality parameters. The results indicated that dietary supplementations with 500 and 1,000 mg/kg quercetin improved the physicochemical properties and eating quality of yellow-feathered broiler chicken breast meat during 12 to 24 h postslaughter. Additionally, quercetin improved the postslaughter oxidative stress status and reduced protein and lipid oxidation levels. It also increased hydrogen bonding interactions and α-helix content during 6 to 12 h postslaughter and decreased ß-sheet content during 12 to 24 h postslaughter in chicken breast MP. This resulted in improved postslaughter MP structure and thermal stability. The correlation results indicated that the enhancement of antioxidant capacity and MP structure enhanced the physicochemical and edible qualities of yellow-feathered broiler chicken breast meat. In conclusion, the current findings suggest that dietary supplementation with quercetin is an ideal approach for improving the eating quality of chicken meat, thereby broadening our understanding of theoretical and technological applications for improving the quality of chicken.

16.
Foods ; 13(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731730

RESUMO

This study aimed to investigate the changes in proteins and volatile flavor compounds that occur in bacon during low-temperature smoking (LTS) and identify potential correlations between these changes. To achieve this, a combination of gas chromatography-mass spectrometry and proteomics was employed. A total of 42 volatile flavor compounds were identified in the bacon samples, and, during LTS, 11 key volatile flavor compounds with variable importance were found at a projection value of >1, including 2',4'-dihydroxyacetophenone, 4-methyl-2H-furan-5-one, Nonanal, etc. In total, 2017 proteins were quantified at different stages of LTS; correlation coefficients and KEGG analyses identified 27 down-regulated flavor-related proteins. Of these, seven were involved in the tricarboxylic acid (TCA) cycle, metabolic pathways, or amino acid metabolism, and they may be associated with the process of flavor formation. Furthermore, correlation coefficient analysis indicated that certain chemical parameters, such as the contents of free amino acids, carbonyl compounds, and TCA cycle components, were closely and positively correlated with the formation of key volatile flavor compounds. Combined with bioinformatic analysis, the results of this study provide insights into the proteins present in bacon at various stages of LTS. This study demonstrates the changes in proteins and the formation of volatile flavor compounds in bacon during LTS, along with their potential correlations, providing a theoretical basis for the development of green processing methods for Hunan bacon.

17.
J Cell Biochem ; 114(11): 2500-12, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23749759

RESUMO

PU.1 is an Ets family transcription factor involved in the myelo-lymphoid differentiation. We have previously demonstrated that PU.1 is also expressed in the adipocyte lineage. However, the expression levels of PU.1 mRNA and protein in preadipocytes do not match the levels in mature adipocytes. PU.1 mRNA level is higher in preadipocytes, whereas its protein is expressed in the adipocytes but not in the preadipocytes. The underlying mechanism remains elusive. Here, we find that miR-155 knockdown or overexpression has no effect on the levels of PU.1 mRNA and protein in preadipocytes or adipocytes. MiR-155 regulates adipogenesis not through PU.1, but via C/EBPß which is another target of miR-155. We also checked the expression levels of PU.1 mRNA and antisense long non-coding RNA (AS lncRNA). Interestingly, compared with the level of PU.1 mRNA, the level of PU.1 AS lncRNA is much higher in preadipocytes, whereas it is opposite in the adipocytes. We further discover that PU.1 AS lncRNA binds to its mRNA forming an mRNA/AS lncRNA compound. The knockdown of PU.1 AS by siRNA inhibits adipogenesis and promotes PU.1 protein expression in both preadipocytes and adipocytes. Furthermore, the repression of PU.1 AS decreases the expression and secretion of adiponectin. We also find that the effect of retroviral-mediated PU.1 AS knockdown on adipogenesis is consistent with that of PU.1 AS knockdown by siRNA. Taken together, our results suggest that PU.1 AS lncRNA promotes adipogenesis through preventing PU.1 mRNA translation via binding to PU.1 mRNA to form mRNA/AS lncRNA duplex in preadipocytes.


Assuntos
Adipogenia/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , Transativadores/metabolismo , Células 3T3-L1 , Adipogenia/genética , Adiponectina/genética , Adiponectina/metabolismo , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética
18.
Toxins (Basel) ; 15(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828446

RESUMO

N-glycolylneuraminic acid (Neu5Gc) is a specific factor in red meat that induces intestinal disease. Our aim was to investigate the effect of Neu5Gc on the intestinal barrier as well as its mechanism of endocytosis and exocytosis. Ten specific inhibitors were used to explore the mechanism of Neu5Gc endocytosis and exocytosis by Caco-2 cells. Amiloride hydrochloride and cytochalasin D had the strongest inhibitory effect on the endocytosis of Neu5Gc. Sodium azide, dynasore, chlorpromazine hydrochloride, and nystatin also inhibited Neu5Gc endocytosis. Dynasore exhibited a stronger inhibitory effect than that of chlorpromazine hydrochloride or nystatin alone. Exocytosis inhibitors, including nocodazole, brefeldin A, monensin, and bafilomycin A, inhibited the transmembrane transport of Neu5Gc. Monensin promoted the exocytosis of Neu5Gc from Caco-2 cells. In another experiment, we observed no significant inhibitory effects of monensin and brefeldin A. Dietary concentrations of Neu5Gc induced prominent damage to intestinal tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 and promoted the phosphorylation of IκB-α and P65 to activate the canonical Nuclear Factor kappa-B (NF-κB) pathway. Neu5Gc increased the RNA levels of pro-inflammatory factors IL-1ß, IL-6, and TNF-α and inhibited those of anti-inflammatory factors TGF-ß and IL-10. BAY, an NF-κB signaling pathway inhibitor, attenuated these changes. Reductions in the levels of ZO-1, occludin, and claudin-1 were recovered in response to BAY. Our data reveal the endocytosis and exocytosis mechanism of Neu5Gc and prove that Neu5Gc can activate the canonical NF-κB signaling pathway, regulate the transcription of inflammatory factors, thereby damaging intestinal barrier function.


Assuntos
Clorpromazina , NF-kappa B , Humanos , NF-kappa B/metabolismo , Células CACO-2 , Ocludina , Claudina-1/metabolismo , Brefeldina A/metabolismo , Brefeldina A/farmacologia , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Monensin/metabolismo , Monensin/farmacologia , Nistatina/metabolismo , Nistatina/farmacologia , Transdução de Sinais , Mucosa Intestinal
19.
Foods ; 12(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37372565

RESUMO

Carbon quantum dots (CQDs) from heat-treated foods show toxicity, but the mechanisms of toxicity and removal of CQDs have not been elucidated. In this study, CQDs were purified from roasted coffee beans through a process of concentration, dialysis and lyophilization. The physical properties of CQDs, the degree and mechanism of toxicity and the removal method were studied. Our results showed that the size of CQDs roasted for 5 min, 10 min and 20 min were about 5.69 ± 1.10 nm, 2.44 ± 1.08 nm and 1.58 ± 0.48 nm, respectively. The rate of apoptosis increased with increasing roasting time and concentration of CQDs. The longer the roasting time of coffee beans, the greater the toxicity of CQDs. However, the caspase inhibitor Z-VAD-FMK was not able to inhibit CQDs-induced apoptosis. Moreover, CQDs affected the pH value of lysosomes, causing the accumulation of RIPK1 and RIPK3 in lysosomes. Treatment of coffee beans with a pulsed electric field (PEF) significantly reduced the yield of CQDs. This indicates that CQDs induced lysosomal-dependent cell death and increased the rate of cell death through necroptosis. PEF is an effective way to remove CQDs from roasted coffee beans.

20.
Polymers (Basel) ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835963

RESUMO

Effectively inhibiting the formation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) is crucial to human health. In the present study, chemical model systems were used to evaluate the inhibitory effects of seven hydrocolloids on HA and AGE formation. The results showed that hydrocolloids effectively inhibited the formation of two major AGEs. However, their inhibitory action against HA formation showed unexpected results, wherein alginic acid, carrageenan and konjac glucomannan promoted the formation of 2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), harmane, norharmane and 2-amino-3,8-dimethyl-imidazo [4,5-f]-quinoline (MeIQx). Only chitosan and pectin showed significant inhibitory effects on HAs, reducing HA levels by 34.5-56.3% and 30.1-56.6%, respectively. In grilled beef patties, the addition of 1.5% chitosan and pectin significantly decreased AGE and HA content by 53.8-67.0% and 46.9-68.1%, respectively. Moreover, it had a limited impact on quality and sensory properties. Further mechanism studies conducted in model systems revealed that chitosan and pectin decreased the formation of key intermediates of AGEs and HAs. These findings suggest that chitosan and pectin are powerful inhibitors against AGE and HA formation with minimal impact on food quality. Therefore, their application in meat preparation and processing could effectively decrease human dietary exposure to HAs and AGEs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa