Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
BMC Plant Biol ; 24(1): 331, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664619

RESUMO

BACKGROUND: Jasmine (Jasminum), renowned for its ornamental value and captivating fragrance, has given rise to numerous species and accessions. However, limited knowledge exists regarding the evolutionary relationships among various Jasminum species. RESULTS: In the present study, we sequenced seven distinct Jasminum species, resulting in the assembly of twelve high-quality complete chloroplast (cp) genomes. Our findings revealed that the size of the 12 cp genomes ranged from 159 to 165 kb and encoded 134-135 genes, including 86-88 protein-coding genes, 38-40 tRNA genes, and 8 rRNA genes. J. nudiflorum exhibited a larger genome size compared to other species, mainly attributed to the elevated number of forward repeats (FRs). Despite the typically conservative nature of chloroplasts, variations in the presence or absence of accD have been observed within J. sambac. The calculation of nucleotide diversity (Pi) values for 19 cp genomes indicated that potential mutation hotspots were more likely to be located in LSC regions than in other regions, particularly in genes ycf2, rbcL, atpE, ndhK, and ndhC (Pi > 0.2). Ka/Ks values revealed strong selection pressure on the genes rps2, atpA, rpoA, rpoC1, and rpl33 when comparing J. sambac with the three most closely related species (J. auriculatum, J. multiflorum, and J. dichotomum). Additionally, SNP identification, along with the results of Structure, PCA, and phylogenetic tree analyses, divided the Jasminum cp genomes into six groups. Notably, J. polyanthum showed gene flow signals from both the G5 group (J. nudiflorum) and the G3 group (J. tortuosum and J. fluminense). Phylogenetic tree analysis reflected that most species from the same genus clustered together with robust support in Oleaceae, strongly supporting the monophyletic nature of cp genomes within the genus Jasminum. CONCLUSION: Overall, this study provides comprehensive insights into the genomic composition, variation, and phylogenetic relationships among various Jasminum species. These findings enhance our understanding of the genetic diversity and evolutionary history of Jasminum.


Assuntos
Evolução Molecular , Variação Genética , Genoma de Cloroplastos , Jasminum , Filogenia , Jasminum/genética , Oleaceae/genética
2.
Plant Cell Environ ; 45(6): 1698-1718, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35141923

RESUMO

Aquaporins (AQPs) play important roles in plant growth, development and tolerance to environmental stresses. To understand the role of AQPs in the mangrove plant Kandelia obovata, which has the ability to acquire water from seawater, we identified 34 AQPs in the K. obovata genome and analysed their structural features. Phylogenetic analysis revealed that KoAQPs are homologous to AQPs of Populus and Arabidopsis, which are evolutionarily conserved. The key amino acid residues were used to assess water-transport ability. Analysis of cis-acting elements in the promoters indicated that KoAQPs may be stress- and hormone-responsive. Subcellular localization of KoAQPs in yeast showed most KoAQPs function in the membrane system. That transgenic yeast with increased cell volume showed that some KoAQPs have significant water-transport activity, and the substrate sensitivity assay indicates that some KoAQPs can transport H2 O2 . The transcriptome data were used to analyze the expression patterns of KoAQPs in different tissues and developing fruits of K. obovata. In addition, real-time quantitative PCR analyses combined transcriptome data showed that KoAQPs have complex responses to environmental factors, including salinity, flooding and cold. Collectively, the transport of water and solutes by KoAQPs contributed to the adaptation of K. obovata to the coastal intertidal environment.


Assuntos
Aquaporinas , Rhizophoraceae , Aquaporinas/genética , Aquaporinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizophoraceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Água/metabolismo
3.
BMC Plant Biol ; 21(1): 341, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281510

RESUMO

BACKGROUND: Restoration through planting is the dominant strategy to conserve mangrove ecosystems. However, many of the plantations fail to survive. Site and seeding selection matters for planting. The process of afforestation, where individuals were planted in a novel environment, is essentially human-controlled transplanting events. Trying to deepen and expand the understanding of the effects of transplanting on plants, we have performed a seven-year-long reciprocal transplant experiment on Kandelia obovata along a latitudinal gradient. RESULTS: Combined phenotypic analyses and next-generation sequencing, we found phenotypic discrepancies among individuals from different populations in the common garden and genetic differentiation among populations. The central population with abundant genetic diversity and high phenotypic plasticity had a wide plantable range. But its biomass was reduced after being transferred to other latitudes. The suppressed expression of lignin biosynthesis genes revealed by RNA-seq was responsible for the biomass reduction. Moreover, using whole-genome bisulfite sequencing, we observed modification of DNA methylation in MADS-box genes that involved in the regulation of flowering time, which might contribute to the adaptation to new environments. CONCLUSIONS: Taking advantage of classical ecological experiments as well as multi-omics analyses, our work observed morphology differences and genetic differentiation among different populations of K. obovata, offering scientific advice for the development of restoration strategy with long-term efficacy, also explored phenotypic, transcript, and epigenetic responses of plants to transplanting events between latitudes.


Assuntos
Rhizophoraceae/crescimento & desenvolvimento , Rhizophoraceae/genética , Biomassa , Conservação dos Recursos Naturais , Metilação de DNA , DNA de Plantas , Ecossistema , Variação Genética , Genética Populacional , Lignanas/biossíntese , Fenótipo , Filogeografia , RNA-Seq
4.
RNA Biol ; 18(12): 2594-2604, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34036876

RESUMO

Alternative polyadenylation (APA) is a widespread post-transcriptional modification method that changes the 3' ends of transcripts by altering poly(A) site usage. However, the longitudinal transcriptomic 3' end profile and its mechanism of action are poorly understood. We applied diurnal time-course poly(A) tag sequencing (PAT-seq) for Arabidopsis and identified 3284 genes that generated both rhythmic and arrhythmic transcripts. These two classes of transcripts appear to exhibit dramatic differences in expression and translation activisty. The asynchronized transcripts derived by APA are embedded with different poly(A) signals, especially for rhythmic transcripts, which contain higher AAUAAA and UGUA signal proportions. The Pol II occupancy maximum is reached upstream of rhythmic poly(A) sites, while it is present directly at arrhythmic poly(A) sites. Integrating H3K9ac and H3K4me3 time-course data analyses revealed that transcriptional activation of histone markers may be involved in the differentiation of rhythmic and arrhythmic APA transcripts. These results implicate an interplay between histone modification and RNA 3'-end processing, shedding light on the mechanism of transcription rhythm and alternative polyadenylation.


Assuntos
Arabidopsis/genética , Poliadenilação , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA de Plantas/genética , Transcrição Gênica , Transcriptoma
5.
Plant J ; 99(1): 67-80, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30844106

RESUMO

The post-transcriptional regulation involved in the responses of diatoms to silicon is poorly understood. Using a poly(A)-tag sequencing (PAT-seq) technique that interrogates only the junctions of 3'-untranslated region (UTR) and the poly(A) tails at the transcriptome level, a comprehensive comparison of alternative polyadenylation (APA) was performed to understand the role of post-transcriptional regulation in various silicon-related cellular responses for the marine diatom Thalassiosira pseudonana. In total, 23 701 poly(A) clusters and 6894 APA genes, treated with silicon starvation and replenishment, were identified at nine time points. Significant APA was found in numerous genes (e.g. five cingulin genes) closely associated with the silicon-starvation response, girdle bands and valve synthesis, suggesting that many genes participated in the responses to silicon availability and biosilica formation through changes in transcript isoforms. The poly(A) site usage profiles were distinct during various stages of silicon biomineralization responses. Moreover, a correlation between APA and expression levels of APA switching genes was also discovered. This is an interesting study that presents a genome-wide profile of transcript ends in diatoms, which is distinct from that of higher plants, animals and other microalgae. This work provides an important resource to understand a different aspect of cell-wall synthesis.


Assuntos
Diatomáceas/metabolismo , Silício/metabolismo , Diatomáceas/genética , Genoma de Planta/genética , Poliadenilação
6.
BMC Genomics ; 21(1): 640, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938378

RESUMO

BACKGROUND: Marine medaka (Oryzias melastigma) is considered as an important ecotoxicological indicator to study the biochemical, physiological and molecular responses of marine organisms towards increasing amount of pollutants in marine and estuarine waters. RESULTS: In this study, we reported a high-quality and accurate de novo genome assembly of marine medaka through the integration of single-molecule sequencing, Illumina paired-end sequencing, and 10X Genomics linked-reads. The 844.17 Mb assembly is estimated to cover more than 98% of the genome and is more continuous with fewer gaps and errors than the previous genome assembly. Comparison of O. melastigma with closely related species showed significant expansion of gene families associated with DNA repair and ATP-binding cassette (ABC) transporter pathways. We identified 274 genes that appear to be under significant positive selection and are involved in DNA repair, cellular transportation processes, conservation and stability of the genome. The positive selection of genes and the considerable expansion in gene numbers, especially related to stimulus responses provide strong supports for adaptations of O. melastigma under varying environmental stresses. CONCLUSIONS: The highly contiguous marine medaka genome and comparative genomic analyses will increase our understanding of the underlying mechanisms related to its extraordinary adaptation capability, leading towards acceleration in the ongoing and future investigations in marine ecotoxicology.


Assuntos
Genoma , Oryzias/genética , Animais , Mapeamento de Sequências Contíguas , Evolução Molecular , Família Multigênica , Seleção Genética , Alinhamento de Sequência , Sequenciamento Completo do Genoma
7.
Genome Res ; 26(12): 1753-1760, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733415

RESUMO

Alternative polyadenylation (APA), in which a transcript uses one of the poly(A) sites to define its 3'-end, is a common regulatory mechanism in eukaryotic gene expression. However, the potential of APA in determining crop agronomic traits remains elusive. This study systematically tallied poly(A) sites of 14 different rice tissues and developmental stages using the poly(A) tag sequencing (PAT-seq) approach. The results indicate significant involvement of APA in developmental and quantitative trait loci (QTL) gene expression. About 48% of all expressed genes use APA to generate transcriptomic and proteomic diversity. Some genes switch APA sites, allowing differentially expressed genes to use alternate 3' UTRs. Interestingly, APA in mature pollen is distinct where differential expression levels of a set of poly(A) factors and different distributions of APA sites are found, indicating a unique mRNA 3'-end formation regulation during gametophyte development. Equally interesting, statistical analyses showed that QTL tends to use APA for regulation of gene expression of many agronomic traits, suggesting a potential important role of APA in rice production. These results provide thus far the most comprehensive and high-resolution resource for advanced analysis of APA in crops and shed light on how APA is associated with trait formation in eukaryotes.


Assuntos
Perfilação da Expressão Gênica/métodos , Oryza/crescimento & desenvolvimento , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/genética , Poliadenilação , Locos de Características Quantitativas , Sinais de Poliadenilação na Ponta 3' do RNA , RNA Mensageiro/química , RNA de Plantas/genética
8.
Plant J ; 91(5): 829-839, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28621907

RESUMO

CPSF100 is a core component of the cleavage and polyadenylation specificity factor (CPSF) complex for 3'-end formation of mRNA, but it still has no clear functional assignment. CPSF100 was reported to play a role in RNA silencing and promote flowering in Arabidopsis. However, the molecular mechanisms underlying these phenomena are not fully understood. Our genetics analyses indicate that plants with a hypomorphic mutant of CPSF100 (esp5) show defects in embryogenesis, reduced seed production or altered root morphology. To unravel this puzzle, we employed a poly(A) tag sequencing protocol and uncovered a different poly(A) profile in esp5. This transcriptome-wide analysis revealed alternative polyadenylation of thousands of genes, most of which result in transcriptional read-through in protein-coding genes. AtCPSF100 also affects poly(A) signal recognition on the far-upstream elements; in particular it prefers less U-rich sequences. Importantly, AtCPSF100 was found to exert its functions through the change of poly(A) sites on genes encoding binding proteins, such as nucleotide-binding, RNA-binding and poly(U)-binding proteins. In addition, through its interaction with RNA Polymerase II C-terminal domain (CTD) and affecting the expression level of CTD phosphatase-like 3 (CPL3), AtCPSF100 is shown to potentially ensure transcriptional termination by dephosphorylation of Ser2 on the CTD. These data suggest a key role for CPSF100 in locating poly(A) sites and affecting transcription termination.


Assuntos
Arabidopsis/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Poli A/metabolismo , Transcrição Gênica , Arabidopsis/fisiologia , Fator de Especificidade de Clivagem e Poliadenilação/genética , Perfilação da Expressão Gênica , Poliadenilação/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética
9.
BMC Genomics ; 17: 37, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26742787

RESUMO

BACKGROUND: Xiphophorus fishes are represented by 26 live-bearing species of tropical fish that express many attributes (e.g., viviparity, genetic and phenotypic variation, ecological adaptation, varied sexual developmental mechanisms, ability to produce fertile interspecies hybrids) that have made attractive research models for over 85 years. Use of various interspecies hybrids to investigate the genetics underlying spontaneous and induced tumorigenesis has resulted in the development and maintenance of pedigreed Xiphophorus lines specifically bred for research. The recent availability of the X. maculatus reference genome assembly now provides unprecedented opportunities for novel and exciting comparative research studies among Xiphophorus species. RESULTS: We present sequencing, assembly and annotation of two new genomes representing Xiphophorus couchianus and Xiphophorus hellerii. The final X. couchianus and X. hellerii assemblies have total sizes of 708 Mb and 734 Mb and correspond to 98 % and 102 % of the X. maculatus Jp 163 A genome size, respectively. The rates of single nucleotide change range from 1 per 52 bp to 1 per 69 bp among the three genomes and the impact of putatively damaging variants are presented. In addition, a survey of transposable elements allowed us to deduce an ancestral TE landscape, uncovered potential active TEs and document a recent burst of TEs during evolution of this genus. CONCLUSIONS: Two new Xiphophorus genomes and their corresponding transcriptomes were efficiently assembled, the former using a novel guided assembly approach. Three assembled genome sequences within this single vertebrate order of new world live-bearing fishes will accelerate our understanding of relationship between environmental adaptation and genome evolution. In addition, these genome resources provide capability to determine allele specific gene regulation among interspecies hybrids produced by crossing any of the three species that are known to produce progeny predisposed to tumor development.


Assuntos
Ciprinodontiformes/genética , Variação Genética , Genoma , Transcriptoma/genética , Animais , Regulação da Expressão Gênica , Genômica , Especificidade da Espécie
10.
Genome Res ; 21(9): 1478-86, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21813626

RESUMO

Polyadenylation sites mark the ends of mRNA transcripts. Alternative polyadenylation (APA) may alter sequence elements and/or the coding capacity of transcripts, a mechanism that has been demonstrated to regulate gene expression and transcriptome diversity. To study the role of APA in transcriptome dynamics, we analyzed a large-scale data set of RNA "tags" that signify poly(A) sites and expression levels of mRNA. These tags were derived from a wide range of tissues and developmental stages that were mutated or exposed to environmental treatments, and generated using digital gene expression (DGE)-based protocols of the massively parallel signature sequencing (MPSS-DGE) and the Illumina sequencing-by-synthesis (SBS-DGE) sequencing platforms. The data offer a global view of APA and how it contributes to transcriptome dynamics. Upon analysis of these data, we found that ∼60% of Arabidopsis genes have multiple poly(A) sites. Likewise, ∼47% and 82% of rice genes use APA, supported by MPSS-DGE and SBS-DGE tags, respectively. In both species, ∼49%-66% of APA events were mapped upstream of annotated stop codons. Interestingly, 10% of the transcriptomes are made up of APA transcripts that are differentially distributed among developmental stages and in tissues responding to environmental stresses, providing an additional level of transcriptome dynamics. Examples of pollen-specific APA switching and salicylic acid treatment-specific APA clearly demonstrated such dynamics. The significance of these APAs is more evident in the 3034 genes that have conserved APA events between rice and Arabidopsis.


Assuntos
Meio Ambiente , Plantas/genética , Poliadenilação/genética , Transcriptoma/genética , Arabidopsis/genética , Perfilação da Expressão Gênica , Interação Gene-Ambiente , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Órgãos/genética , Oryza/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
11.
Mitochondrial DNA B Resour ; 8(12): 1440-1444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173916

RESUMO

Kandelia obovata Sheue, H.Y.Liu & J.W.H.Yong is one of the most cold-resistant true mangrove species, and it is widely distributed from the South China Sea to southern Japan. In the current study, the complete mitochondrial genome sequence of K. obovata was assembled using Illumina reads. It is the first mitochondrial genome of the Kandelia genus within the family Rhizophoraceae to be sequenced. The mitochondrial genome size is 312,146 bp with a total of 49 predicted genes, including 29 protein-coding genes, 17 transfer RNA genes, and 3 ribosomal RNA genes. The overall GC content of the genome is 41.87%. A phylogenetic tree constructed using nine complete mitochondrial genomes revealed that K. obovata is more closely related to Bruguiera species. This study enriches the plastid genome of Kandelia, furnishing valuable genetic insights for the investigation of evolutionary and population genetics in Kandelia and other mangrove species.

12.
Front Plant Sci ; 14: 1069055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844068

RESUMO

Mangrove forests inhabit tropical or subtropical intertidal zones and have remarkable abilities in coastline protection. Kandelia obovata is considered the most cold-tolerant mangrove species and has been widely transplanted to the north subtropical zone of China for ecological restoration. However, the physiological and molecular mechanisms of K. obovata under colder climate was still unclear. Here, we manipulated the typical climate of cold waves in the north subtropical zone with cycles of cold/recovery and analyzed the physiological and transcriptomic responses of seedlings. We found that both physiological traits and gene expression profiles differed between the first and later cold waves, indicating K. obovata seedlings were acclimated by the first cold experience and prepared for latter cold waves. 1,135 cold acclimation-related genes (CARGs) were revealed, related to calcium signaling, cell wall modification, and post-translational modifications of ubiquitination pathways. We identified the roles of CBFs and CBF-independent transcription factors (ZATs and CZF1s) in regulating the expression of CARGs, suggesting both CBF-dependent and CBF- independent pathways functioned in the cold acclimation of K. obovata. Finally, we proposed a molecular mechanism of K. obovata cold acclimation with several key CARGs and transcriptional factors involved. Our experiments reveal strategies of K. obovata coping with cold environments and provide prospects for mangrove rehabilitation and management.

13.
BMC Genomics ; 13: 474, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22971268

RESUMO

BACKGROUND: The release of oil resulting from the blowout of the Deepwater Horizon (DH) drilling platform was one of the largest in history discharging more than 189 million gallons of oil and subject to widespread application of oil dispersants. This event impacted a wide range of ecological habitats with a complex mix of pollutants whose biological impact is still not yet fully understood. To better understand the effects on a vertebrate genome, we studied gene expression in the salt marsh minnow Fundulus grandis, which is local to the northern coast of the Gulf of Mexico and is a sister species of the ecotoxicological model Fundulus heteroclitus. To assess genomic changes, we quantified mRNA expression using high throughput sequencing technologies (RNA-Seq) in F. grandis populations in the marshes and estuaries impacted by DH oil release. This application of RNA-Seq to a non-model, wild, and ecologically significant organism is an important evaluation of the technology to quickly assess similar events in the future. RESULTS: Our de novo assembly of RNA-Seq data produced a large set of sequences which included many duplicates and fragments. In many cases several of these could be associated with a common reference sequence using blast to query a reference database. This reduced the set of significant genes to 1,070 down-regulated and 1,251 up-regulated genes. These genes indicate a broad and complex genomic response to DH oil exposure including the expected AHR-mediated response and CYP genes. In addition a response to hypoxic conditions and an immune response are also indicated. Several genes in the choriogenin family were down-regulated in the exposed group; a response that is consistent with AH exposure. These analyses are in agreement with oligonucleotide-based microarray analyses, and describe only a subset of significant genes with aberrant regulation in the exposed set. CONCLUSION: RNA-Seq may be successfully applied to feral and extremely polymorphic organisms that do not have an underlying genome sequence assembly to address timely environmental problems. Additionally, the observed changes in a large set of transcript expression levels are indicative of a complex response to the varied petroleum components to which the fish were exposed.


Assuntos
Fundulidae/genética , Poluição por Petróleo/efeitos adversos , Transcriptoma , Poluentes Químicos da Água/efeitos adversos , Animais , Estuários , Golfo do México , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA , Áreas Alagadas
14.
Tree Physiol ; 42(11): 2353-2368, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708522

RESUMO

The process of plastids developing into chloroplasts is critical for plants to survive. However, this process in woody plants is less understood. Kandelia obovata Sheue, Liu & Yong is a viviparous mangrove species; the seeds germinate on the maternal tree, and the hypocotyls continue to develop into mature propagules. We identified rare albino propagules through field observation among normal green and brown ones. Toward unveiling the propagule plastid development mechanism, albino propagule leaves only have etioplasts, low photosynthesis rates, and drastically reduced chlorophyll a/b and carotenoid contents, but with increased superoxide dismutase activities. To identify candidate genes controlling propagule plastid development, a genome-wide association study (GWAS) was performed between the albino and green propagules. Twenty-five significant single nucleotide polymorphisms (SNPs) were associated with albino propagule plastid development, the most significant SNPs being located on chromosomes 1 and 5. Significant differentially expressed genes were identified in porphyrin and chlorophyll metabolisms, carotenoid and flavonoid biosynthesis by combining transcriptome and GWAS data. In particular, KoDELLAs, encoding a transcription factor and KoCHS, encoding chalcone synthase, may be essential to regulate the albino propagules plastid development through weakened chlorophyll and flavonoid biosynthesis pathways while promoting chlorophyll degradation. Our results provide insights into genetic mechanisms regulating propagule plastid development in woody plants.


Assuntos
Rhizophoraceae , Rhizophoraceae/metabolismo , Estudo de Associação Genômica Ampla , Clorofila A , Clorofila/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Carotenoides , Flavonoides
15.
Front Plant Sci ; 13: 1075353, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684775

RESUMO

In 2003, Kandelia obovata was identified as a new mangrove species differentiated from Kandelia candel. However, little is known about their chloroplast (cp) genome differences and their possible ecological significance. In this study, 25 whole cp genomes, with seven samples of K. candel from Malaysia, Thailand, and Bangladesh and 18 samples of K. obovata from China, were sequenced for comparison. The cp genomes of both species encoded 128 genes, namely 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes, but the cp genome size of K. obovata was ~2 kb larger than that of K. candle due to the presence of more and longer repeat sequences. Of these, tandem repeats and simple sequence repeats exhibited great differences. Principal component analysis based on indels, and phylogenetic tree analyses constructed with homologous protein genes from the single-copy genes, as well as 38 homologous pair genes among 13 mangrove species, gave strong support to the separation of the two species within the Kandelia genus. Homologous genes ndhD and atpA showed intraspecific consistency and interspecific differences. Molecular dynamics simulations of their corresponding proteins, NAD(P)H dehydrogenase chain 4 (NDH-D) and ATP synthase subunit alpha (ATP-A), predicted them to be significantly different in the functions of photosynthetic electron transport and ATP generation in the two species. These results suggest that the energy requirement was a pivotal factor in their adaptation to differential environments geographically separated by the South China Sea. Our results also provide clues for future research on their physiological and molecular adaptation mechanisms to light and temperature.

16.
Biomolecules ; 11(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499049

RESUMO

Hexavalent chromium [Cr(VI)] pollution is one of most serious heavy metal pollutants in the coastal area and posed serious threats to marine organisms and human beings. Many studies have been conducted on its toxicological effects on living organisms from morphological to physiological aspects. However, there are few studies about the transgenerational toxicological of Cr(VI). In this study, we exposed adult marine medaka fishes with Cr(VI) and their offspring with Cr(VI) to examine transgenerational effects of Cr(VI). We found that there were mechanisms such as changing reproduction modes in males to compensate for impacts on the reproduction. There were differences and similarities between the parental effect and the environmental effect, with the former one causing more serious adverse effects on the offspring of Cr(VI)-exposed fish. It was noteworthy that there was an interaction between the parental and offspring treatment which leads to the attenuation of the parental effects on offspring when the offspring also underwent the same treatment. In addition, physiological adaptation has also been observed in fish to improve their fitness. Overall, effects of Cr(VI) on fish and their offspring were studied to pave a way to study the of mechanisms of adaptation.


Assuntos
Cromo/química , Fertilização/efeitos dos fármacos , Oryzias/fisiologia , Reprodução/efeitos dos fármacos , Adaptação Fisiológica , Animais , DNA/química , Feminino , Temperatura Alta , Masculino , Teratogênicos , Poluentes Químicos da Água
17.
Antibiotics (Basel) ; 10(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34680780

RESUMO

Receptor-interacting protein 3 (RIP3) has been demonstrated to be a key regulator not only in cell death pathways including apoptosis and necroptosis but also in inflammation and host immune responses. In this study, a RIP3 ortholog named Lc-RIP3 is identified in large yellow croaker (Larimichthys crocea). The open reading frame (ORF) of Lc-RIP3 is 1524 bp long and encodes a protein of 507 amino acids (aa). The deduced Lc-RIP3 protein has an N-terminal kinase domain and a C-terminal RHIM domain, and the genome organization of Lc-RIP3 is conserved in teleosts with 12 exons and 11 introns but is different from that in mammals, which comprises 10 exons and 9 introns. Confocal microscopy revealed that Lc-RIP3 is a cytosolic protein. The expression analysis at the mRNA level indicated that Lc-RIP3 is ubiquitously distributed in various tissues/organs, and could be up-regulated under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulation in vivo. Notably, Lc-RIP3 could induce NF-κB but not IRF3 activation. In addition, Lc-RIP3 co-expression with Lc-TRIF, Lc-MAVS, or Lc-IRF3 significantly abolishes the activation of NF-κB but enhances the induction of IRF3 activity. Moreover, NF-κB activity could be up-regulated when Lc-RIP3 is co-expressed with Lc-RIP1 or Lc-IRF7. These results collectively indicate that Lc-RIP3 acts as an important regulator in host innate immune signaling in teleosts.

18.
Sci Total Environ ; 785: 147298, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940401

RESUMO

Wetting-drying cycles typically result in a wide range of soil moistures and redox potentials (Eh) that significantly affect the soil microbial community. Although numerous studies have addressed the effects of soil moisture on soil microbial community structure and composition, the response of active microbes to the fluctuation in soil Eh is still largely unknown; this is especially true for the ecological roles of abundant and rare taxa. To explore the dynamics of active and total microbial communities in response to wetting-drying cycles, we conducted a microcosm experiment based on three wetting-drying cycles and 16S rRNA transcript (active) and 16S rRNA gene (total) amplicon sequencing. We found that both active and total microbial communities during three wetting-drying cycles were clustered according to the number of wetting-drying cycles (temporal factor) rather than soil moisture or Eh. Dynamics of the active microbial community, however, were redox dependent during the first wetting-drying cycle. In addition, rare taxa in the active microbial community exhibited more obvious differences than abundant ones during three wetting-drying cycles. Species turnover of abundant and rare taxa of total and active microbes, rather than species richness, explained the highest percentage of community variation. Rare taxa exhibited the most marked temporal turnover during three wetting-drying cycles. Members of Rhodospirillaceae were the major contributor to the resilience of abundant taxa of active microbes during the first wetting-drying cycle. Overall, these findings expand our current understanding of underlying assembly mechanisms of soil microbial communities responding to wetting-drying cycles.


Assuntos
Microbiota , Solo , Dessecação , RNA Ribossômico 16S , Microbiologia do Solo
19.
Environ Pollut ; 287: 117339, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000668

RESUMO

Microplastic (MP) pollution is widespread in various ecosystems and is colonized by microbes that form biofilms with compositions and functions. However, compared with aquatic environments, the soil environment has been poorly studied in terms of the taxonomic composition of microbial communities and the factors influencing the community structure of microbes in the plastisphere. In the present study, a microcosm experiment was conducted to investigate the plastisphere bacterial communities of MP (polyvinyl chloride, PVC) in soils with different pH (4.62, 6.5, and 7.46) and arsenic (As) contents (13 and 74 mg kg-1). Bacterial communities in the plastisphere were dominated by Proteobacteria and Firmicutes, with distinct compositions and structures compared with soil bacterial communities. Soil pH and As content significantly affected the plastisphere bacterial communities. Constrained analysis of principal coordinates and a structural equation model demonstrated that soil pH had a stronger influence on the dissimilarity and diversity of bacterial communities than did soil As content. Soil pH affected As speciation in soil and on MP. The concentration of dimethylarsinic acid (DMA) was significantly higher on MP than that in soil, indicating that As methylation occurred on MP. These results suggest that environmental fluctuations govern plastisphere bacterial communities with cascading effects on biogeochemical cycling of As in the soil ecosystems.


Assuntos
Arsênio , Microbiota , Concentração de Íons de Hidrogênio , Plásticos , Solo , Microbiologia do Solo
20.
Aquat Toxicol ; 240: 105970, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562875

RESUMO

Increasing salinity levels in marine and estuarine ecosystems greatly influence developmental, physiological and molecular activities of inhabiting fauna. Marine medaka (Oryzias melastigma), a euryhaline research model, has extraordinary abilities to survive in a wide range of aquatic salinity. To elucidate how marine medaka copes with salinity differences, the responses of Oryzias melastigma after being transferred to different salt concentrations [0 practical salinity units (psu), 15 psu, 30 psu (control), 45 psu] were studied at developmental, histochemical and transcriptome levels in the gill and liver tissues. A greater number of gills differentially expressed genes (DEG) under 0 psu (609) than 15 psu (157) and 45 psu (312), indicating transcriptomic adjustments in gills were more sensitive to the extreme hypotonic environment. A greater number of livers DEGs were observed in 45 psu (1,664) than 0 psu (87) and L15 psu (512), suggesting that liver was more susceptible to hypertonic environment. Further functional analyses of DEGs showed that gills have a more immediate response, mainly in adjusting ion balance, immune and signal transduction. In contrast, DEGs in livers were involved in protein synthesis and processing. We also identified common DEGs in both gill and liver and found they were mostly involved in osmotic regulation of amino sugar and nucleotide sugar metabolism and steroid biosynthesis. Additionally, salinity stresses showed no significant effects on most developmental and histochemical parameters except increased heartbeat with increasing salinity and decreased glycogen after transferred from stable conditions (30 psu) to other salinity environments. These findings suggested that salinity-stress induced changes in gene expressions could reduce the effects on developmental and histochemical parameters. Overall, this study provides a useful resource for understanding the molecular mechanisms of fish responses to salinity stresses.


Assuntos
Oryzias , Animais , Ecossistema , Perfilação da Expressão Gênica , Brânquias , Fígado , Oryzias/genética , RNA-Seq , Salinidade , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa