Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Nature ; 605(7911): 761-766, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35585240

RESUMO

Diabetes mellitus is prevalent among women of reproductive age, and many women are left undiagnosed or untreated1. Gestational diabetes has profound and enduring effects on the long-term health of the offspring2,3. However, the link between pregestational diabetes and disease risk into adulthood in the next generation has not been sufficiently investigated. Here we show that pregestational hyperglycaemia renders the offspring more vulnerable to glucose intolerance. The expression of TET3 dioxygenase, responsible for 5-methylcytosine oxidation and DNA demethylation in the zygote4, is reduced in oocytes from a mouse model of hyperglycaemia (HG mice) and humans with diabetes. Insufficient demethylation by oocyte TET3 contributes to hypermethylation at the paternal alleles of several insulin secretion genes, including the glucokinase gene (Gck), that persists from zygote to adult, promoting impaired glucose homeostasis largely owing to the defect in glucose-stimulated insulin secretion. Consistent with these findings, mouse progenies derived from the oocytes of maternal heterozygous and homozygous Tet3 deletion display glucose intolerance and epigenetic abnormalities similar to those from the oocytes of HG mice. Moreover, the expression of exogenous Tet3 mRNA in oocytes from HG mice ameliorates the maternal effect in offspring. Thus, our observations suggest an environment-sensitive window in oocyte development that confers predisposition to glucose intolerance in the next generation through TET3 insufficiency rather than through a direct perturbation of the oocyte epigenome. This finding suggests a potential benefit of pre-conception interventions in mothers to protect the health of offspring.


Assuntos
Dioxigenases , Intolerância à Glucose , Hiperglicemia , Oócitos , Adulto , Animais , Dioxigenases/metabolismo , Feminino , Glucose/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Humanos , Hiperglicemia/complicações , Hiperglicemia/genética , Hiperglicemia/metabolismo , Herança Materna , Camundongos , Oócitos/metabolismo
2.
Circulation ; 148(24): 1958-1973, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37937441

RESUMO

BACKGROUND: Reducing cardiovascular disease burden among women remains challenging. Epidemiologic studies have indicated that polycystic ovary syndrome (PCOS), the most common endocrine disease in women of reproductive age, is associated with an increased prevalence and extent of coronary artery disease. However, the mechanism through which PCOS affects cardiac health in women remains unclear. METHODS: Prenatal anti-Müllerian hormone treatment or peripubertal letrozole infusion was used to establish mouse models of PCOS. RNA sequencing was performed to determine global transcriptomic changes in the hearts of PCOS mice. Flow cytometry and immunofluorescence staining were performed to detect myocardial macrophage accumulation in multiple PCOS models. Parabiosis models, cell-tracking experiments, and in vivo gene silencing approaches were used to explore the mechanisms underlying increased macrophage infiltration in PCOS mouse hearts. Permanent coronary ligation was performed to establish myocardial infarction (MI). Histologic analysis and small-animal imaging modalities (eg, magnetic resonance imaging and echocardiography) were performed to evaluate the effects of PCOS on injury after MI. Women with PCOS and control participants (n=200) were recruited to confirm findings observed in animal models. RESULTS: Transcriptomic profiling and immunostaining revealed that hearts from PCOS mice were characterized by increased macrophage accumulation. Parabiosis studies revealed that monocyte-derived macrophages were significantly increased in the hearts of PCOS mice because of enhanced circulating Ly6C+ monocyte supply. Compared with control mice, PCOS mice showed a significant increase in splenic Ly6C+ monocyte output, associated with elevated hematopoietic progenitors in the spleen and sympathetic tone. Plasma norepinephrine (a sympathetic neurotransmitter) levels and spleen size were consistently increased in women with PCOS when compared with those in control participants, and norepinephrine levels were significantly correlated with circulating CD14++CD16- monocyte counts. Compared with animals without PCOS, PCOS animals showed significantly exacerbated atherosclerotic plaque development and post-MI cardiac remodeling. Conditional Vcam1 silencing in PCOS mice significantly suppressed cardiac inflammation and improved cardiac injury after MI. CONCLUSIONS: Our data documented previously unrecognized mechanisms through which PCOS could affect cardiovascular health in women. PCOS may promote myocardial macrophage accumulation and post-MI cardiac remodeling because of augmented splenic myelopoiesis.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Síndrome do Ovário Policístico , Gravidez , Feminino , Humanos , Camundongos , Animais , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/diagnóstico , Remodelação Ventricular , Infarto do Miocárdio/complicações , Inflamação/complicações , Norepinefrina
3.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37986679

RESUMO

Skeletal muscle plays a crucial role in maintaining metabolic function, energy homeostasis, movement function, as well as endocrine function. The gestation period is a critical stage for the myogenesis and development of skeletal muscle. Adverse environmental exposures during pregnancy would impose various effects on the skeletal muscle health of offspring. Maternal obesity during pregnancy can mediate lipid deposition in skeletal muscle of offspring by affecting fetal skeletal muscle metabolism and inflammation-related pathways. Poor dietary habits during pregnancy, such as high sugar and high fat intake, can affect the autophagy function of skeletal muscle mitochondria and reduce the quality of offspring skeletal muscle. Nutritional deficiencies during pregnancy can affect the development of offspring skeletal muscle through epigenetic modifications. Gestational diabetes may affect the function of offspring skeletal muscle by upregulating the levels of miR-15a and miR-15b in offspring. Exposure to environmental endocrine disruptors during pregnancy may impair skeletal muscle function by interfering with insulin receptor-related signaling pathways in offspring. This article reviews the research progress on effects and possible mechanisms of adverse maternal exposures during pregnancy on offspring skeletal muscle function in clinical and animal studies, aiming to provide scientific evidence for the prevention and treatment strategy of birth defects in skeletal muscle.

4.
Biol Reprod ; 107(1): 148-156, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35774031

RESUMO

The prevalence of gestational diabetes mellitus (GDM) is increasing rapidly. In addition to the metabolic disease risks, GDM might increase the risks of cryptorchidism in children. However, its mechanism involved in abnormalities of the male reproductive system is still unclear. The purpose of this study was to study the effects of GDM on the development of mouse fetal Leydig cells (FLCs) and Sertoli cells (SCs). Pregnant mice were treated on gestational days 6.5 and 12.5 with streptozotocin (100 mg/kg) or vehicle (sodium citrate buffer). Leydig cell and SC development and functions were evaluated by investigating serum testosterone levels, cell number and distribution, genes, and protein expression. GDM decreased serum testosterone levels, the anogenital distance, and the level of desert hedgehog in SCs of testes of male offspring. FLC number was also decreased in testes of GDM offspring by delaying the commitment of stem Leydig cells into the Leydig cell lineage. RNA-seq showed that FOXL2, RSPO1/ß-catenin signaling was activated and Gsk3ß signaling was inhibited in GDM offspring testis. In conclusion, GDM disrupted reproductive tract and testis development in mouse male offspring via altering genes related to development.


Assuntos
Diabetes Gestacional , Testículo , Animais , Diabetes Gestacional/metabolismo , Feminino , Desenvolvimento Fetal , Humanos , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Gravidez , Células de Sertoli/metabolismo , Testículo/metabolismo , Testosterona
5.
Reprod Biomed Online ; 44(6): 1101-1109, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35400578

RESUMO

RESEARCH QUESTION: Is advanced paternal age (APA) associated with preterm birth overall and with the subtypes of preterm birth? DESIGN: A total of 66,167 pregnancies were included. Linear regression and logistic regression models were used to analyse the association between paternal age and subtypes of preterm birth. RESULTS: APA was associated with a higher risk of preterm birth (35-44 years: odds ratio [OR] 1.16 [1.04-1.28], P = 0.006; >44 years: OR 1.40 [1.10-1.78], P = 0.007) and very early preterm birth (VPTB; <34 weeks) (35-44 years: OR 1.46 [1.17-1.81], P = 0.002; >44 years: OR 1.65 [1.01-2.69], P = 0.045). The increased risk of preterm birth was mostly associated with preterm birth with premature rupture of membranes (PROM-PTB) (35-44 years: OR 1.23 [1.03-1.48], P = 0.021) and medically induced preterm birth (MI-PTB) (>44 years: OR 1.55 [1.12-2.15], P = 0.008). For women who carried a male fetus, having the father in the 35- to 44-year-old group carried a 1.29-fold risk of PROM-PTB (OR 1.29 [1.02-1.63], P = 0.031) and a 1.26-fold risk of MI-PTB (OR 1.26 [1.04-1.52], P = 0.017). There was no evidence of a higher risk of PROM-PTB among women carrying a female fetus, but there was a 1.67-fold higher risk of MI-PTB for the 45-or-older paternal age group (OR 1.67 [1.04-2.67], P = 0.035). CONCLUSIONS: These results suggest that APA is associated with a higher risk of preterm birth and VPTB, mainly related to PROM-PTB and MI-PTB. The study also indicates a fetal sex-specific association between APA and a higher risk of PROM-PTB for male fetuses.


Assuntos
Ruptura Prematura de Membranas Fetais , Nascimento Prematuro , Adulto , Feminino , Ruptura Prematura de Membranas Fetais/epidemiologia , Humanos , Recém-Nascido , Masculino , Idade Paterna , Gravidez , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/etiologia , Estudos Retrospectivos , Fatores de Risco
6.
J Cell Mol Med ; 25(12): 5404-5416, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33955677

RESUMO

Gestational and postpartum high-fat diets (HFDs) have been implicated as causes of obesity in offspring in later life. The present study aimed to investigate the effects of gestational and/or postpartum HFD on obesity in offspring. We established a mouse model of HFD exposure that included gestation, lactation and post-weaning periods. We found that gestation was the most sensitive period, as the administration of a HFD impaired lipid metabolism, especially fatty acid oxidation in both foetal and adult mice, and caused obesity in offspring. Mechanistically, the DNA hypermethylation level of the nuclear receptor, peroxisome proliferator-activated receptor-α (Pparα), and the decreased mRNA levels of ten-eleven translocation 1 (Tet1) and/or ten-eleven translocation 2 (Tet2) were detected in the livers of foetal and adult offspring from mothers given a HFD during gestation, which was also associated with low Pparα expression in hepatic cells. We speculated that the hypermethylation of Pparα resulted from the decreased Tet1/2 expression in mothers given a HFD during gestation, thereby causing lipid metabolism disorders and obesity. In conclusion, this study demonstrates that a HFD during gestation exerts long-term effects on the health of offspring via the DNA demethylation of Pparα, thereby highlighting the importance of the gestational period in regulating epigenetic mechanisms involved in metabolism.


Assuntos
Desmetilação , Dieta Hiperlipídica/efeitos adversos , Obesidade/patologia , PPAR alfa/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Feminino , Idade Gestacional , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , PPAR alfa/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo
7.
Reproduction ; 162(6): 437-448, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34605773

RESUMO

The number of children born after assisted reproductive technology (ART) is accumulating rapidly, and the health problems of the children are extensively concerned. This study aims to evaluate whether ART procedures alter behaviours in male offspring. Mouse models were utilized to establish three groups of offspring conceived by natural conception (NC), in vitro fertilization and embryo transfer (IVF-ET), and frozen-thawed embryo transfer (IVF-FET), respectively. A battery of behaviour experiments for evaluating anxiety and depression levels, including the open field test (OFT), elevated plus maze (EPM) test, light/dark transition test (L/DTT), tail suspension test (TST), forced swimming test (FST), and sucrose preference test (SPT) was carried out. Aged (18 months old), but not young (3 months old), male offspring in the IVF-ET and IVF-FET groups, compared with those in the NC group, exhibited increased anxiety and depression-like behaviours. The protein expression levels of three neurotrophins in PFC or hippocampus in aged male offspring from the IVF-ET and IVF-FET groups reduced at different extent, in comparison to NC group. RNA sequencing (RNA-Seq) was performed in the hippocampus of 18 months old offspring to further explore the gene expression profile changes in the three groups. KEGG analyses revealed the coexisted pathways, such as PI3K-Akt signalling pathway, which potentially reflected the similarity and divergence in anxiety and depression between the offspring conceived by IVF-ET and IVF-FET. Our research suggested the adverse effects of advanced age on the psychological health of children born after ART should be highlighted in the future.


Assuntos
Depressão , Fosfatidilinositol 3-Quinases , Animais , Ansiedade/etiologia , Depressão/etiologia , Fertilização in vitro/efeitos adversos , Masculino , Camundongos , Técnicas de Reprodução Assistida/efeitos adversos , Estudos Retrospectivos
8.
BMC Pregnancy Childbirth ; 21(1): 341, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926401

RESUMO

BACKGROUND: Previous studies have focused on pregnancy outcomes after frozen embryo transfer (FET) performed using different endometrial preparation protocols. Few studies have evaluated the effect of endometrial preparation on pregnancy-related complications. This study was designed to explore the association between different endometrial preparation protocols and adverse obstetric and perinatal complications after FET. METHODS: We retrospectively included all FET cycles (n = 12,950) in our hospital between 2010 and 2017, and categorized them into three groups, natural cycles (NC), hormone replacement therapy (HRT) and ovarian stimulation (OS) protocols. Pregnancy-related complications and subsequent neonatal outcomes were compared among groups. RESULTS: Among all 12,950 FET cycles, the live birth rate was slightly lower for HRT cycles than for NC (HRT vs. NC: 28.15% vs. 31.16%, p < 0.001). The pregnancy loss rate was significantly higher in OS or HRT cycles than in NC (HRT vs. NC: 17.14% vs. 10.89%, p < 0.001; OS vs. NC: 16.44% vs. 10.89%, p = 0.001). Among 3864 women with live birth, preparing the endometrium using OS or HRT protocols increased the risk of preeclampsia, and intrahepatic cholestasis of pregnancy (ICP) in both singleton and multiple deliveries. Additionally, OS and HRT protocols increased the risk of low birth weight (LBW) and small for gestational age (SGA) in both singletons and multiples after FET. CONCLUSION: Compared with HRT or OS protocols, preparing the endometrium with NC was associated with the decreased risk of pregnancy-related complications, as well as the decreased risk of LBW and SGA after FET.


Assuntos
Transferência Embrionária/efeitos adversos , Endométrio/fisiologia , Terapia de Reposição Hormonal/efeitos adversos , Indução da Ovulação/métodos , Complicações na Gravidez/etiologia , Adulto , China , Colestase Intra-Hepática/etiologia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Nascido Vivo , Modelos Logísticos , Pré-Eclâmpsia/etiologia , Gravidez , Resultado da Gravidez , Taxa de Gravidez , Estudos Retrospectivos
9.
J Assist Reprod Genet ; 38(1): 33-40, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32926298

RESUMO

OBJECTIVE: To study the effect of aging on ovarian circadian rhythm. DESIGN: Human and animal study. SETTING: University hospital and research laboratory. PATIENTS/ANIMALS: Human granulosa cells were obtained by follicular aspiration from women undergoing in vitro fertilization (IVF), and ovarian and liver tissues were obtained from female C57BL/6 mice. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Expression of circadian genes in young and older human granulosa cells and circadian rhythm in ovaries and livers of young and older mice. RESULT(S): All examined circadian clock genes in human granulosa cells showed a downward trend in expression with aging, and their mRNA expression levels were negatively correlated with age (P < 0.05). Older patients (≥ 40 years of age) had significantly reduced serum anti-Müllerian hormone (AMH) levels. Except for Rev-erbα, all other examined circadian clock genes were positively correlated with the level of AMH (P < 0.05). The circadian rhythm in the ovaries of older mice (8 months) was changed significantly relative to that in ovaries of young mice (12 weeks), although the circadian rhythm in the livers of older mice was basically consistent with that of young mice. CONCLUSION(S): Lower ovarian reserve in older women is partially due to ovarian circadian dysrhythmia as a result of aging.


Assuntos
Envelhecimento/genética , Ritmo Circadiano/genética , Fígado/metabolismo , Ovário/metabolismo , Envelhecimento/patologia , Animais , Hormônio Antimülleriano/sangue , Feminino , Fertilização in vitro , Células da Granulosa/metabolismo , Humanos , Camundongos , Reserva Ovariana/genética , Ovário/crescimento & desenvolvimento , Ovário/patologia , RNA Mensageiro/genética
10.
Hum Mol Genet ; 27(21): 3787-3800, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010909

RESUMO

Primary ovarian insufficiency (POI) leads to infertility and premature menopause in young women. The genetic etiology of this disorder remains unknown in most patients. Using whole exome sequencing of a large Chinese POI pedigree, we identified a heterozygous 5 bp deletion inducing a frameshift in BNC1, which is predicted to result in a non-sense-mediated decay or a truncated BNC1 protein. Sanger sequencing identified another BNC1 missense mutation in 4 of 82 idiopathic patients with POI, and the mutation was absent in 332 healthy controls. Transfection of recombinant plasmids with the frameshift mutant and separately with the missense mutant in HEK293T cells led to abnormal nuclear localization. Knockdown of BNC1 was found to reduce BMP15 and p-AKT levels and to inhibit meiosis in oocytes. A female mouse model of the human Bnc1 frameshift mutation exhibited infertility, significantly increased serum follicle-stimulating hormone, decreased ovary size and reduced follicle numbers, consistent with POI. We report haploinsufficiency of BNC1 as an etiology of human autosomal dominant POI.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação de Sentido Incorreto , Insuficiência Ovariana Primária/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto , Idoso , Animais , Povo Asiático/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Linhagem , Insuficiência Ovariana Primária/metabolismo , Sequenciamento do Exoma , Adulto Jovem
11.
Biochem Biophys Res Commun ; 524(4): 791-797, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32019676

RESUMO

Increased granulosa cell (GC) proliferation may contribute to abnormal folliculogenesis in patients with polycystic ovary syndrome (PCOS), which affects approximately 10% reproductive aged women. However, the mechanisms underlying increased GC proliferation in PCOS remain incompletely understood. In this study, we identified miR-3940-5p as a hub miRNA in GC from PCOS using weighted gene co-expression network analysis (WGCNA), and real-time polymerase chain reaction (RT-PCR) analysis confirmed that miR-3940-5p was significantly increased in GC from PCOS. Enrichment analysis of predicted target genes of miR-3940-5p indicated potential roles of miR-3940-5p in follicular development and cell proliferation regulation. Consistently, functional study confirmed that miR-3940-5p overexpression promoted granulosa cell proliferation. Integrated analysis of mRNA expression profiling data and predicted target genes of miR-3940-5p identified potassium voltage-gated channel subfamily A member 5 (KCNA5) as a potential target of miR-3940-5p, and was validated by luciferase reporter assay. Finally, functional analysis suggested that miR-3940-5p promoted GC proliferation in a KCNA5 dependent manner. In conclusion, miR-3940-5p was a hub miRNA upregulated in GC from PCOS, and promoted GC proliferation by targeting KCNA5.


Assuntos
Regulação Neoplásica da Expressão Gênica , Células da Granulosa/metabolismo , Canal de Potássio Kv1.5/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , Síndrome do Ovário Policístico/genética , Adulto , Antagomirs/genética , Antagomirs/metabolismo , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Genes Reporter , Células da Granulosa/patologia , Humanos , Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/metabolismo , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
12.
Artigo em Inglês | MEDLINE | ID: mdl-32081430

RESUMO

Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by hyperandrogenism, polycystic ovaries, and anovulation. Previous studies have revealed that androgen receptors (ARs) are strongly associated with hyperandrogenism and abnormalities in folliculogenesis in patients with PCOS. However, the kinases responsible for androgen receptor activity, especially in granulosa cells, and the role of casein kinase 2α (CK2α) specifically in the pathogenesis of PCOS, remain unknown. Here, we show that both CK2α protein and mRNA levels were higher in luteinized granulosa cells of patients with PCOS compared with non-PCOS, as well as in the ovarian tissues of mice with a dehydroepiandrosterone-induced PCOS-like phenotype, compared with controls. In addition, CK2α not only interacted with AR in vivo and in vitro, but it also phosphorylated and stabilized AR, triggering AR and ovulation related genes excessive expression. CK2α also promoted cell proliferation in the KGN cell line and inhibited apoptosis. Collectively, the finding highlighted that the CK2α-AR axis probably caused the etiology of the PCOS. Thus, CK2α might be a promising clinical therapeutic target for PCOS treatment.

13.
FASEB J ; 33(4): 5425-5439, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30759346

RESUMO

Brown adipose tissue (BAT) is an exclusive tissue of nonshivering thermogenesis. It is fueled by lipids and glucose and involved in energy and metabolic homeostasis. Intrauterine exposure to hyperglycemia during gestational diabetes mellitus may result in abnormal fetal development and metabolic phenotypes in adulthood. However, whether intrauterine hyperglycemia influences the development of BAT is unknown. In this study, mouse embryos were exposed to the intrauterine hyperglycemia environment by injecting streptozocin into pregnant mice at 1 d post coitum (dpc). The structure of BAT was examined by hematoxylin and eosin staining and immunohistochemical analysis. The glucose uptake in BAT was measured in vivo by [18F]-fluoro-2-deoxyglucose-micro-positron emission tomography. The gene expression in BAT was determined by real-time PCR, and the 5'-C-phosphate-G-3' site-specific methylation was quantitatively analyzed. Intrauterine hyperglycemia exposure resulted in the impaired structure of BAT and decreased glucose uptake function in BAT in adulthood. The expressions of the genes involved in thermogenesis and mitochondrial respiratory chain in BAT, such as Ucp1, Cox5b, and Elovl3, were down-regulated by intrauterine hyperglycemia exposure at 18.5 dpc and at 16 wk of age. Furthermore, higher methylation levels of Ucp1, Cox5b, and Elovl3 were found in offspring of mothers with streptozotocin-induced diabetes. Our results provide the evidence for enduring inhibitory effects of intrauterine hyperglycemia on BAT development in offspring. Intrauterine hyperglycemia is associated with increased DNA methylation of the BAT specific genes in offspring, which support an epigenetic involvement.-Yu, D.-Q., Lv, P.-P., Yan, Y.-S., Xu, G.-X., Sadhukhan, A., Dong, S., Shen, Y., Ren, J., Zhang, X.-Y., Feng, C., Huang, Y.-T., Tian, S., Zhou, Y., Cai, Y.-T., Ming, Z.-H., Ding, G.-L., Zhu, H., Sheng, J.-Z., Jin, M., Huang, H.-F. Intrauterine exposure to hyperglycemia retards the development of brown adipose tissue.


Assuntos
Tecido Adiposo Marrom/fisiopatologia , Hiperglicemia/fisiopatologia , Útero/fisiopatologia , Tecido Adiposo Marrom/metabolismo , Animais , Metilação de DNA/fisiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Gestacional/induzido quimicamente , Diabetes Gestacional/metabolismo , Diabetes Gestacional/fisiopatologia , Transporte de Elétrons/fisiologia , Feminino , Expressão Gênica/fisiologia , Glucose/metabolismo , Hiperglicemia/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Estreptozocina/farmacologia , Termogênese/fisiologia , Útero/metabolismo
14.
Reprod Biomed Online ; 41(6): 1122-1132, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33132060

RESUMO

RESEARCH QUESTION: Fat accumulation is present in most post-menopausal women, but the underlying mechanism remains unclear. Aquaporin 7 (AQP7) is the most important glycerol channel facilitating glycerol efflux in adipocytes. High circulating FSH in post-menopausal women may play an independent role in regulation of the lipogenic effect of AQP7 in adipocytes. This study explored the role of AQP7 in the pathophysiology of post-menopausal lipogenesis mediated by high concentrations of circulating FSH. DESIGN: Primary adipocytes from post-menopausal and childbearing women were analysed. An in-vivo post-menopausal animal model was established. AQP7 expression, lipid accumulation and glycerol concentration in adipocytes were measured. Luciferase reporter assay and chromatin immunoprecipitation were performed to identify transcriptional crosstalk in AQP7 promoter. RESULTS: It was found that FSH down-regulated AQP7 expression and glycerol efflux function in mature adipocytes of post-menopausal women and ovariectomized (OVX) mice. In vitro, FSH inhibited lipid accumulation in primary cultured mature adipocytes in a dose-dependent manner and the mechanism was down-regulating AQP7 expression via a FSH receptor pathway. The effect of FSH on AQP7 in adipocytes was through activation of cAMP response element-binding (CREB) protein, which could bind to activator protein-1 (AP-1) sites in the AQP7 promoter, and therefore inhibited the transcriptional activation elicited by c-Jun. CONCLUSIONS: Down-regulation of AQP7 by FSH mediated post-menopausal lipogenesis, and the role of FSH was based on binding competition for AP-1 sites between CREB and c-Jun.


Assuntos
Aquaporinas/fisiologia , Hormônio Foliculoestimulante/farmacologia , Lipogênese/genética , Pós-Menopausa , Fator de Transcrição AP-1/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adulto , Idoso , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Estudos de Casos e Controles , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Pós-Menopausa/genética , Pós-Menopausa/metabolismo
15.
Mol Biol Rep ; 47(11): 8407-8417, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33068229

RESUMO

Blastomere loss is a common issue during frozen-thawed embryo transfer (FET). Our previous study showed that blastomere loss was associated with an increased risk of small-for-gestational-age (SGA) neonates. The present study assessed the impact of blastomere loss during cryopreservation by comparing the mRNA profiles of umbilical cord blood of FET offspring from the prospective cohort study. Umbilical cord blood samples were collected from 48 neonates, including 12 from the loss group, 11 from the intact group, and 25 from the matched spontaneous pregnancy group. RNA-seq technology was used to compare the global gene expression profiles of the lymphocytes. Then, we used TopHat software to map the reads and quantitative real-time PCR to validate some important differentially expressed genes (DEGs). We identified 92 DEGs between the loss group and the spontaneous pregnancy group, including IGF2 and H19. Ingenuity Pathway Analysis (IPA) showed that the DEGs were most affected in the blastomere loss group. Downstream analysis also predicted the activation of organismal death pathways. In conclusions, our pilot study sheds light on the mechanism underlying how human blastomere loss may affect offspring at the gene expression level. These conclusions are, however, only suggestive, as the current study is based on a very limited sample size and type or nature of biological samples. Additional studies with larger sample sizes and independent experiments with placental samples should be conducted to verify these findings.


Assuntos
Blastômeros/metabolismo , Criopreservação/métodos , Transferência Embrionária/métodos , Fertilização in vitro/métodos , Sangue Fetal/metabolismo , Transcriptoma , Adulto , Análise por Conglomerados , Metilação de DNA , Feminino , Redes Reguladoras de Genes , Humanos , Recém-Nascido , Fator de Crescimento Insulin-Like II/genética , Projetos Piloto , Gravidez , Estudos Prospectivos , RNA-Seq/métodos
16.
J Assist Reprod Genet ; 37(8): 1931-1938, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32519010

RESUMO

PURPOSE: Higher serum estradiol levels occur in women undergoing assisted reproductive technology (ART) owing to ovarian stimulation. Here, we investigated the association between maternal serum estradiol levels and the intellectual development of offspring conceived with ART. METHODS: A total of 204 singletons born after fresh embryo transfer were recruited for this cohort study. Among them, 102 children were born from mothers with high serum estradiol levels (> 12,000 pmol/L) on the day that human chorionic gonadotropin was administered. Another 102 children, matched by gestational age and age of the children, were recruited as controls from mothers with low serum estradiol (≤ 12,000 pmol/L). The Wechsler Preschool and Primary Scale of Intelligence was used to evaluate the intellectual development of the children. RESULTS: Children from mothers with higher serum estradiol levels scored lower in the verbal intelligence quotient (IQ) tests and verbal comprehension than children whose mothers had lower estradiol levels. The main difference between the two groups was in verbal subtests including information, vocabulary, and sorting. Partial correlation analysis revealed that the logarithm of maternal serum estradiol level negatively correlated with verbal IQ, performance IQ, and full scale IQ. CONCLUSION: Our data demonstrate that a high maternal serum estradiol level may negatively associate the verbal ability of children conceived via ART.


Assuntos
Estradiol/sangue , Deficiência Intelectual/sangue , Inteligência/fisiologia , Técnicas de Reprodução Assistida/efeitos adversos , Adulto , Criança , Pré-Escolar , Gonadotropina Coriônica/administração & dosagem , Estudos de Coortes , Transferência Embrionária/efeitos adversos , Feminino , Fertilização in vitro/efeitos adversos , Humanos , Deficiência Intelectual/etiologia , Deficiência Intelectual/fisiopatologia , Testes de Inteligência , Masculino , Injeções de Esperma Intracitoplásmicas/efeitos adversos
17.
J Allergy Clin Immunol ; 143(6): 2038-2051.e12, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30654047

RESUMO

BACKGROUND: Exposure to early-life undernutrition is closely related to higher risks of adverse immunologic outcomes in adulthood. Although it has been suggested that asthma has its origins in early life, its underlying mechanisms remain largely unknown. OBJECTIVE: We characterized the effects of early-life undernutrition on T lymphocytes, which play a pivotal role in immune diseases, and we investigated whether this contributes to susceptibility to asthma in adulthood. METHODS: Pregnant mice were fed a protein restriction diet (PRD) to establish an early-life undernutrition model. Naive CD4+ T cells (CD4+CD62LhiCD44-) from offspring were used throughout the study. TH2 differentiation was examined by using fluorescence-activated cell sorting and ELISA under TH2-polarized conditions in vitro and through ovalbumin-induced experimental asthma in vivo. T-cell metabolism was measured with a Seahorse XF96 Analyzer. DNA methylation levels were measured by using bisulfite sequencing. RESULTS: PRD CD4+ T cells displayed increased activation and proliferation and were prone to differentiate into TH2 cells both in vitro and in vivo, leading to susceptibility to experimental asthma. Mechanistically, early-life undernutrition upregulated mechanistic target of rapamycin 1-dependent glycolysis and induced conserved noncoding DNA sequence 1 DNA hypomethylation in the TH2 cytokine locus of CD4+ T cells. Glycolysis blockades undermined increased TH2 skewing and alleviated experimental asthma in PRD mice. CONCLUSION: Early-life undernutrition induced mechanistic target of rapamycin 1-dependent glycolysis upregulation and TH2 cytokine locus hypomethylation in CD4+ T cells, resulting in increased T-cell activation, proliferation, and TH2 skewing and further susceptibility to experimental asthma.


Assuntos
Asma/genética , Asma/imunologia , Linfócitos T CD4-Positivos/imunologia , Desnutrição/genética , Desnutrição/imunologia , Alérgenos/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Epigênese Genética , Feminino , Glicólise , Pulmão/imunologia , Pulmão/fisiopatologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/imunologia , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Gravidez
18.
J Mol Cell Cardiol ; 128: 1-10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30641088

RESUMO

High circulating androgen in women with polycystic ovary syndrome (PCOS) may increase the risk of cardiovascular disease in offspring. The aim of the present study is to investigate whether maternal androgen excess in the rat PCOS model would lead to cardiac hypertrophy in offspring. Maternal testosterone propionate (maternal-TP)-treated adult female offspring displayed cardiac hypertrophy associated with local high cardiac dihydrotestosterone (DHT). The molecular markers of cardiac hypertrophy along with androgen receptor (AR) and PKCδ, were increased in the Maternal-TP group. Treatment of primary neonatal rat ventricular cardiomyocytes (NRCMs) and H9c2 cells with DHT significantly increased cell size and upregulated PKCδ expression, which could be attenuated by AR antagonist. Treatment with phorbol 12-myristate 13-acetate (PMA), a PKC activator, significantly increased cell size and upregulated myh7 level. Rottlerin, that may inhibit PKCδ, significantly reduced the hypertrophic effect of DHT and PMA on NRCMs and H9c2 cells. Chromatin immunoprecipitation revealed that AR could bind to Pkcδ promoter. Our results indicate that prenatal exposure to testosterone may induce cardiac hypertrophy in adult female rats through enhanced Pkcδ expression in cardiac myocytes.


Assuntos
Cardiomegalia/genética , Síndrome do Ovário Policístico/genética , Proteína Quinase C-delta/genética , Receptores Androgênicos/genética , Acetofenonas/farmacologia , Androgênios/genética , Androgênios/metabolismo , Animais , Animais Recém-Nascidos , Benzopiranos/farmacologia , Cardiomegalia/etiologia , Cardiomegalia/patologia , Di-Hidrotestosterona/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Proteína Quinase C-delta/antagonistas & inibidores , Ratos , Transdução de Sinais/efeitos dos fármacos , Testosterona/farmacologia , Acetato de Tetradecanoilforbol/farmacologia
19.
Reproduction ; 158(5): 465-475, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31505459

RESUMO

Fertilization failure often occurs during in vitro fertilization (IVF) cycles despite apparently normal sperm and oocytes. Accumulating evidence suggests that mitochondria play crucial roles in the regulation of sperm function and male fertility. 3-Nitrophthalic acid (3-NPA) can induce oxidative stress in mitochondria, and melatonin, as an antioxidant, can improve mitochondrial function by reducing mitochondrial oxidative stress. The role of sperm mitochondrial dysfunction in fertilization failure during IVF is unclear. The present study revealed that spermatozoa with low, or poor, fertilization rates had swollen mitochondria, increased mitochondria-derived ROS, and attenuated mitochondrial respiratory capacity. 3-NPA treatment enhanced mitochondrial dysfunction in sperm. Spermatozoa with poor fertilization rates, and spermatozoa treated with 3-NPA, had reduced penetration ability. The concentration of melatonin was decreased in semen samples with low and poor fertilization rates. Melatonin, not only decreased excessive mitochondria-derived ROS, but also 'rescued' the reduced penetration capacity of spermatozoa treated with 3-NPA. Taken together, the study suggested that mitochondria-derived ROS and mitochondrial respiratory capacity are independent bio-markers for sperm dysfunction, and melatonin may be useful in improving sperm quality and overall male fertility.


Assuntos
Fertilização/efeitos dos fármacos , Melatonina/farmacologia , Doenças Mitocondriais/patologia , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Animais , Antioxidantes/metabolismo , Fenômenos Biomecânicos/efeitos dos fármacos , Cricetinae , Feminino , Fertilização/fisiologia , Fertilização in vitro/métodos , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/patologia , Infertilidade Masculina/terapia , Masculino , Melatonina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/fisiopatologia , Doenças Mitocondriais/terapia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Análise do Sêmen , Espermatozoides/fisiologia
20.
BMC Endocr Disord ; 19(1): 22, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767767

RESUMO

BACKGROUND: To investigate the frequency and risk factors for recurrent gestational diabetes mellitus (GDM) in Chinese primiparous women. METHODS: Case control study. We investigated primiparous women who experienced GDM complications and had a subsequent pregnancy in the same hospital from January, 2012 to January, 2017. Ultimately, 78 women with recurrent GDM and 64 women with no recurrence were included. Clinical characteristics and biochemical parameters such as fasting plasma glucose (FPG), oral glucose tolerance test (OGTT) and lipid profiles were collected from medical records. We used an independent t-test and Chi-square test or Fisher's exact test to compare each variable. Univariate and multivariate logistic analyses were used to compute each odds ratio (OR) and 95% confidence interval (CI). RESULTS: The frequency of recurrent GDM was 55%. We found postprandial 1-h glucose at the 75-g OGTT was positively related to GDM recurrence, whereas first-trimester FPG in first pregnancy was negatively related. The first-trimester HbA1c value was higher in the group with GDM recurrence than in the group with no recurrence, though the difference was not significant. Moreover, the group with GDM recurrence manifested significantly higher first-trimester triglyceride concentrations in subsequent pregnancies; the adjusted ORs (95% CI) were 1.43 (1.09-1.87), 0.24 (0.10-0.63), 3.59 (0.93-13.88) and 1.89 (1.13-3.16). CONCLUSIONS: GDM recurred in more than half of subsequent pregnancies. Women with lower first-trimester FPG and higher postprandial 1-h glucose in first pregnancy, and with higher first-trimester triglyceride in subsequent pregnancy were at increased risk for GDM recurrence.


Assuntos
Biomarcadores/sangue , Diabetes Gestacional/sangue , Diabetes Gestacional/epidemiologia , Paridade , Adulto , China/epidemiologia , Feminino , Seguimentos , Humanos , Incidência , Gravidez , Prognóstico , Recidiva , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa