Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
EMBO J ; 39(13): e103325, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510170

RESUMO

Communication between myeloid cells and epithelium plays critical role in maintaining intestinal epithelial barrier integrity. Myeloid cells interact with intestinal epithelial cells (IECs) by producing various mediators; however, the molecules mediating their crosstalk remain incompletely understood. Here, we report that deficiency of angiogenin (Ang) in mouse myeloid cells caused impairment of epithelial barrier integrity, leading to high susceptibility to DSS-induced colitis. Mechanistically, myeloid cell-derived angiogenin promoted IEC survival and proliferation through plexin-B2-mediated production of tRNA-derived stress-induced small RNA (tiRNA) and transcription of ribosomal RNA (rRNA), respectively. Moreover, treatment with recombinant angiogenin significantly attenuated the severity of experimental colitis. In human samples, the expression of angiogenin was significantly down-regulated in patients with inflammatory bowel disease (IBD). Collectively, we identified, for the first time to our knowledge, a novel mediator of myeloid cell-IEC crosstalk in maintaining epithelial barrier integrity, suggesting that angiogenin may serve as a new preventive agent and therapeutic target for IBD.


Assuntos
Mucosa Intestinal/metabolismo , Células Mieloides/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ribonuclease Pancreático/metabolismo , Transdução de Sinais , Animais , Comunicação Celular/genética , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Humanos , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Células Mieloides/patologia , Proteínas do Tecido Nervoso/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribonuclease Pancreático/genética
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 857-865, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38567413

RESUMO

Inflammatory bowel disease (IBD) is a debilitating condition that can lead to life-threatening complications. Macrophages are crucial in IBD management because they secrete various cytokines and regulate tissue repair. Macrophage-derived angiogenin (ANG) has been shown to be essential for limiting colonic inflammation, but its upstream regulatory pathway and role in macrophages remain unclear. Here we show that ANG expression is up-regulated in macrophages during colitis treatment or upon lipopolysaccharides (LPS) treatment. Mechanistically, LPS activates Toll-like receptor 4 (TLR4) to initiate NF-κB translocation from the cytoplasm to the nucleus, where it binds to the ANG promoter and enhances its transcriptional activity, leading to increased ANG expression. Interestingly, our data also reveal that the deletion of ANG in macrophages has no adverse effect on key macrophage functions, such as phagocytosis, chemotaxis, and cell survival. Our findings establish a "LPS-TLR4-NF-κB-ANG" regulatory axis in inflammatory disorders and confirm that ANG controls inflammation in a paracrine manner, highlighting the importance of ANG as a key mediator in the complex network of inflammatory processes.


Assuntos
Colite , Lipopolissacarídeos , Macrófagos , NF-kappa B , Ribonuclease Pancreático , Transdução de Sinais , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/genética , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Transdução de Sinais/efeitos dos fármacos , Colite/metabolismo , Colite/induzido quimicamente , Colite/genética , Camundongos , Camundongos Endogâmicos C57BL , Humanos
3.
Ecotoxicol Environ Saf ; 259: 115040, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235898

RESUMO

Exposure to the toxic metal cadmium (Cd) is a well-established risk factor for hepatic inflammation, but it remains unclear how metabolic components, such as different fatty acids (FAs), interact with Cd to influence this process. Understanding these interactions is essential for identifying potential preventative and therapeutic targets for this disorder. To address this question, we conducted in vitro and in vivo studies to investigate the combinatorial effect of Cd and saturated FAs on hepatic inflammation. Specifically, we assessed the cytotoxicity of Cd on macrophages and their polarization and inflammatory activation upon co-exposure to Cd and saturated FAs. Our results showed that while saturated FAs had minimal impact on the cytotoxicity of Cd on macrophages, they significantly collaborated with Cd in predisposing macrophages towards a pro-inflammatory M1 polarization, thereby promoting inflammatory activation. This joint effect of Cd and saturated FAs resulted in persistent inflammation and hepatic steatohepatitis in vivo. In summary, our study identified macrophage polarization as a novel mechanism by which co-exposure to Cd and saturated lipids induces hepatic inflammation. Our findings suggest that intervening in macrophage polarization may be a potential approach for mitigating the adverse hepatic effects of Cd.


Assuntos
Cádmio , Ácidos Graxos , Humanos , Ácidos Graxos/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Macrófagos/metabolismo , Fígado/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo
4.
Environ Toxicol ; 38(1): 205-215, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36178722

RESUMO

Growing evidence demonstrates that the bioaccumulation of polystyrene nanoplastics (PS-NPs) in the gastrointestinal tract has negative effects on health. Until now, little information has been available regarding the potential hazards of PS-NPs to intestinal epithelial barriers. In this study, we employed cellular and animal models to investigate the adverse effects of PS-NPs on intestinal epithelium and the underlying mechanism. We found that PS-NPs affected the growth and survival of intestinal epithelial cells in a time- and concentration-dependent manner. PS-NPs accumulated in the cytoplasm, resulting in an impaired autophagic flux and inducing an autophagic response. This response was also confirmed in vivo. Our results provide new insights into the internalization of PS-NPs and the resultant autophagy response in intestinal epithelial cells.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Microplásticos/toxicidade , Nanopartículas/toxicidade , Autofagia , Células Epiteliais
5.
EMBO Rep ; 21(4): e49229, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32064749

RESUMO

N6-methyladenosine (m6 A) mRNA methylation has emerged as an important player in many biological processes by regulating gene expression. However, its roles in intestinal stem cell (ISC) homeostasis remain largely unknown. Here, we report that YTHDF1, an m6 A reader, is highly expressed in ISCs and its expression is upregulated by Wnt signaling at the translational level. Whereas YTHDF1 is dispensable for normal intestinal development in mice, genetic ablation of Ythdf1 dramatically blocks Wnt-driven regeneration and tumorigenesis with reduced ISC stemness. Mechanistically, YTHDF1 facilitates the translation of Wnt signaling effectors including TCF7L2/TCF4, while this process is enhanced during Wnt activation to augment ß-catenin activity. Targeting YTHDF1 in ISCs of established tumors leads to tumor shrinkage and prolonged survival. Collectively, our studies unveil YTHDF1 as an amplifier of Wnt/ß-catenin signaling at the translational level, which is required for the maintenance of ISCs during regeneration and tumorigenesis.


Assuntos
Intestinos , Via de Sinalização Wnt , Animais , Carcinogênese , Transformação Celular Neoplásica , Metilação , Camundongos
6.
Ecotoxicol Environ Saf ; 233: 113306, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183812

RESUMO

Exposure to cadmium (Cd), a toxic metal, is epidemiologically linked to nonalcoholic steatohepatitis (NASH) in humans. However, the role of Cd in NASH remains to be fully elucidated. This study employed a novel murine NASH model to investigate the effects of chronic low-dose Cd on hepatic pathology and its underlying mechanisms. NASH is characterized by lipid accumulation, extensive cell death, and persistent inflammation in the liver. We found that treatment with Cd in drinking water (10 mg/L) for 6 or 12 weeks significantly boosted hepatic fat deposition, increased hepatocyte destruction, and amplified inflammatory responses in mice, confirming that low-dose Cd can facilitate NASH development in vivo. Mechanistically, chronic Cd exposure reshaped the hepatic transcriptional landscape, with PPAR-mediated fatty acid metabolic pathways being the most significantly altered. In particular, Cd repressed fatty acid desaturation, leading to the accumulation of saturated fatty acids whose lipotoxicity exacerbated cell death and, consequently, inflammatory activation. In summary, we validated the causal effects of chronic low-dose Cd on NASH in vivo and identified the fatty acid desaturation program as a novel target for Cd to instigate hepatopathological alterations.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Cádmio/metabolismo , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente
7.
Gut ; 70(4): 666-676, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32843357

RESUMO

OBJECTIVE: Antimicrobial peptides (AMPs) play essential roles in maintaining gut health and are associated with IBD. This study is to elucidate the effect of angiogenin (ANG), an intestine-secreted AMP, on gut microbiota and its relevance with IBD. DESIGN: The effect of ANG on microbiota and its contribution to colitis were evaluated in different colitis models with co-housing and faecal microbiota transplantation. ANG-regulated bacteria were determined by 16S rDNA sequencing and their functions in colitis were analysed by bacterial colonisation. The species-specific antimicrobial activity of ANG and its underlying mechanism were further investigated with microbiological and biochemical methods. ANG level and the key bacteria were characterised in IBD faecal samples. RESULTS: ANG regulated microbiota composition and inhibited intestinal inflammation. Specifically, Ang1 deficiency in mice led to a decrease in the protective gut commensal strains of Lachnospiraceae but an increase in the colitogenic strains of α-Proteobacteria. Direct binding of ANG to α-Proteobacteria resulted in lethal disruption of bacterial membrane integrity, and consequently promoted the growth of Lachnospiraceae, which otherwise was antagonised by α-Proteobacteria. Oral administration of ANG1 reversed the dysbiosis and attenuated the severity of colitis in Ang1-deficient mice. The correlation among ANG, the identified bacteria and IBD status was established in patients. CONCLUSION: These findings demonstrate a novel role of ANG in shaping gut microbe composition and thus maintaining gut health, suggesting that the ANG-microbiota axis could be developed as a potential preventive and/or therapeutic approach for dysbiosis-related gut diseases.


Assuntos
Alphaproteobacteria/efeitos dos fármacos , Clostridiales/efeitos dos fármacos , Colite/tratamento farmacológico , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Ribonuclease Pancreático/farmacologia , Animais , Transplante de Microbiota Fecal , Fezes/microbiologia , Homeostase , Camundongos , Ribonuclease Pancreático/administração & dosagem
8.
Anticancer Drugs ; 32(7): 703-708, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33661188

RESUMO

Although colorectal cancer (CRC) is one of the most common causes of cancer mortality, early-stage detection dramatically improves survival rate. To explore the feasibility of serum angiogenin (ANG) as a biomarker for early detection of colorectal neoplasia, we collected serum samples from 781 participants, including 369 patients with CRC, 133 with colorectal adenoma and 279 healthy controls. We examined the levels of serum ANG by ELISA, calculated the diagnostic accuracy of ANG by plotted receiver operating characteristic curves (ROCs), and compared it with those obtained by carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). We also analyzed the relationship between serum ANG level and TNM stage in CRC patients. The results showed that ANG serum levels were significantly elevated in patients with colorectal adenomas and CRC (P < 0.01). The area under the ROC curve (AUC) for ANG in distinguishing CRC patients from healthy controls was 0.740 [95% confidence interval (CI): 0.705-0.744], comparable to that of CEA (0.770; 95% CI: 0.735-0.802; P = 0.26) but significantly higher than that of CA19-9 (0.636; 95% CI: 0.598-0.674, P < 0.01), with much higher sensitivity (67.75%) than CEA (36.86%) or CA19-9 (12.20%). We observed no significant differences in ANG serum levels among CRCs at different TNM stages. Furthermore, sensitivity and specificity of ANG for distinguishing colorectal adenomas patients from healthy controls were 66.20% and 64.90%, respectively. ANG has the potential to serve as a serum biomarker for early detection of colorectal neoplasia.


Assuntos
Adenoma/sangue , Neoplasias Colorretais/sangue , Ribonuclease Pancreático/sangue , Adenoma/patologia , Biomarcadores Tumorais , Antígeno CA-19-9/sangue , Antígeno Carcinoembrionário/sangue , Neoplasias Colorretais/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Curva ROC
9.
Int J Cancer ; 145(5): 1395-1407, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30828790

RESUMO

Metastasis of colorectal cancer (CRC) is the leading cause of CRC-associated mortality. Angiogenin (ANG), a member of the ribonuclease A superfamily, not only activates endothelial cells to induce tumor angiogenesis, but also targets tumor cells to promote cell survival, proliferation and/or migration. However, its clinical significance and underlying mechanism in CRC metastasis are still largely unknown. Here, we reported that ANG was upregulated in CRC tissues and associated with metastasis in CRC patients. We then revealed that ANG enhanced CRC growth and metastasis in both in vitro and in vivo systems. Intriguingly, we characterized a bunch of tRNA-derived stress-induced small RNAs (tiRNAs), produced through ANG cleavage, that was enriched in both CRC tumor tissues and highly metastatic cells, and functioned in ANG-promoted CRC metastasis. Moreover, higher level of a 5'-tiRNA from mature tRNA-Val (5'-tiRNA-Val) was observed in CRC patients and was correlated with tumor metastasis. Taken together, we propose that a novel ANG-tiRNAs-cell migration and invasion regulatory axis promotes CRC metastasis, which might be of potential target for CRC diagnosis and treatment.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , RNA de Transferência/biossíntese , Ribonuclease Pancreático/metabolismo , Regiões 5' não Traduzidas , Animais , Estudos de Casos e Controles , Movimento Celular/fisiologia , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/genética , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribonuclease Pancreático/genética , Regulação para Cima
10.
Angiogenesis ; 22(2): 251-262, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30465119

RESUMO

The miR-200 family, consisting of miR-200a/b/c, miR-141, and miR-429, is well known to inhibit epithelial-to-mesenchymal transition (EMT) in cancer invasion and metastasis. Among the miR-200 family members, miR-200a/b/c and miR-429 have been reported to inhibit angiogenesis. However, the role of miR-141 in angiogenesis remains elusive, as contradicting results have been found in different cancer types and tumor models. Particularly, the effect of miR-141 in vascular endothelial cells has not been defined. In this study, we used several in vitro and in vivo models to demonstrate that miR-141 in endothelial cells inhibits angiogenesis. Additional mechanistic studies showed that miR-141 suppresses angiogenesis through multiple targets, including NRP1, GAB1, CXCL12ß, TGFß2, and GATA6, and bioinformatics analysis indicated that miR-141 and its targets comprise a powerful and precise regulatory network to modulate angiogenesis. Taken together, these data not only demonstrate an anti-angiogenic effect of miR-141, further strengthening the critical role of miR-200 family in the process of angiogenesis, but also provides a valuable cancer therapeutic target to control both angiogenesis and EMT, two essential steps in tumor growth and metastasis.


Assuntos
Redes Reguladoras de Genes/fisiologia , MicroRNAs/fisiologia , Neovascularização Fisiológica/genética , Animais , Células Cultivadas , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética
11.
Nucleic Acids Res ; 42(16): 10720-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25159612

RESUMO

Follistatin (FST) performs several vital functions in the cells, including protection from apoptosis during stress. The expression of FST is up-regulated in response to glucose deprivation by an unknown mechanism. We herein showed that the induction of FST by glucose deprivation was due to an increase in the half-life of its mRNA. We further identified an AU-rich element (ARE) in the 3'UTR of FST mRNA that mediated its decay. The expression of FST was elevated after knocking down AUF1 and reduced when AUF1 was further expressed. In vitro binding assays and RNA pull-down assays revealed that AUF1 interacted with FST mRNA directly via its ARE. During glucose deprivation, a majority of AUF1 shuttled from cytoplasm to nucleus, resulting in dissociation of AUF1 from FST mRNA and thus stabilization of FST mRNA. Finally, knockdown of AUF1 decreased whereas overexpression of AUF1 increased glucose deprivation-induced apoptosis. The apoptosis promoting effect of AUF1 was eliminated in FST expressing cells. Collectively, this study provided evidence that AUF1 is a negative regulator of FST expression and participates in the regulation of cell survival under glucose deprivation.


Assuntos
Apoptose , Folistatina/genética , Glucose/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Proteínas Quinases Ativadas por AMP/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Folistatina/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogênea D0 , Humanos
12.
Acta Biochim Biophys Sin (Shanghai) ; 48(5): 399-410, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26705141

RESUMO

As a member of the vertebrate-specific secreted ribonucleases, angiogenin (ANG) was first isolated and identified solely by its ability to induce new blood vessel formation, and now, it has been recognized to play important roles in various physiological and pathological processes through regulating cell proliferation, survival, migration, invasion, and/or differentiation. ANG exhibits very weak ribonucleolytic activity that is critical for its biological functions, and exerts its functions through activating different signaling transduction pathways in different target cells. A series of recent studies have indicated that ANG contributes to cellular nucleic acid metabolism. Here, we comprehensively review the results of studies regarding the structure, mechanism, and function of ANG over the past three decades. Moreover, current problems and future research directions of ANG are discussed. The understanding of the function and mechanism of ANG in a wide context will help to better delineate its roles in diseases, especially in cancer and neurodegenerative diseases.


Assuntos
Ribonuclease Pancreático , Animais , Carcinogênese , Humanos , Tolerância Imunológica , Modelos Moleculares , Neovascularização Fisiológica , Doenças Neurodegenerativas/etiologia , Ácidos Nucleicos/metabolismo , Mapas de Interação de Proteínas , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/fisiologia , Transdução de Sinais
13.
J Biol Chem ; 289(18): 12520-34, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24659782

RESUMO

Angiogenin (ANG) and ribonuclease 4 (RNASE4), two members of the secreted and vertebrate-specific ribonuclease superfamily, play important roles in cancers and neurodegenerative diseases. The ANG and RNASE4 genes share genetic regions with promoter activities, but the structure and regulation of these putative promotes are unknown. We have characterized the promoter regions, defined the transcription start site, and identified a mechanism of transcription regulation that involves both RNA polymerase III (Pol III) elements and CCCTC binding factor (CTCF) sites. We found that two Pol III elements within the promoter region influence ANG and RNASE4 expression in a position- and orientation-dependent manner. We also provide evidence for the presence of an intragenic chromatin loop between the two CTCF binding sites located in two introns flanking the ANG coding exon. We found that formation of this intragenic loop preferentially enhances ANG transcription. These results suggest a multilayer transcriptional regulation of ANG and RNASE4 gene locus. These data also add more direct evidence to the notion that Pol III elements are able to directly influence Pol II gene transcription. Furthermore, our data indicate that a CTCF-dependent chromatin loop is able to differentially regulate transcription of genes that share the same promoters.


Assuntos
Cromatina/genética , RNA Polimerase III/metabolismo , Proteínas Repressoras/metabolismo , Ribonuclease Pancreático/genética , Ribonucleases/genética , Transcrição Gênica , Sítios de Ligação/genética , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Cromatina/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Luciferases/genética , Luciferases/metabolismo , Mutação , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Polimerase II/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
14.
J Cell Sci ; 126(Pt 18): 4308-19, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23843625

RESUMO

Angiogenin (ANG) promotes cell growth and survival. Under growth conditions, ANG undergoes nuclear translocation and accumulates in the nucleolus where it stimulates rRNA transcription. When cells are stressed, ANG mediates the production of tRNA-derived stress-induced small RNA (tiRNA), which reprograms protein translation into a survival mechanism. The ribonucleolytic activity of ANG is essential for both processes but how this activity is regulated is unknown. We report here that ribonuclease/angiogenin inhibitor 1 (RNH1) controls both the localization and activity of ANG. Under growth conditions, ANG is located in the nucleus and is not associated with RNH1 so that the ribonucleolytic activity is retained to ensure rRNA transcription. Cytoplasmic ANG is associated with and inhibited by RNH1 so that random cleavage of cellular RNA is prevented. Under stress conditions, ANG is localized to the cytoplasm and is concentrated in stress granules where it is not associated with RNH1 and thus remains enzymatically active for tiRNA production. By contrast, nuclear ANG is associated with RNH1 in stressed cells to ensure that the enzymatic activity is inhibited and no unnecessary rRNA is produced to save anabolic energy. Knockdown of RNH1 abolished stress-induced relocalization of ANG and decreased cell growth and survival.


Assuntos
Proteínas de Transporte/metabolismo , Ribonuclease Pancreático/metabolismo , Apoptose , Proteínas de Transporte/genética , Proliferação de Células , Células HeLa , Humanos , Estresse Oxidativo , Ribonuclease Pancreático/genética , Análise de Sobrevida , Transcrição Gênica/efeitos dos fármacos , Transfecção
15.
J Cell Physiol ; 229(4): 521-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24122807

RESUMO

Angiogenin (ANG) undergoes nuclear translocation and promotes ribosomal RNA (rRNA) transcription thereby enhancing cell growth and proliferation. However, the mode of action of ANG in stimulating rRNA transcription is unclear. Here, we show that ANG enhances the formation of RNA polymerase I (Pol I) pre-initiation complex at the ribosomal DNA (rDNA) promoter. ANG binds at the upstream control element (UCE) of the promoter and enhances promoter occupancy of RNA Pol I as well as the selectivity factor SL1 components TAFI 48 and TAFI 110. We also show that ANG increases the number of actively transcribing rDNA by epigenetic activation through promoter methylation and histone modification. ANG binds to histone H3, inhibits H3K9 methylation, and activates H3K4 methylation as well as H4 acetylation at the rDNA promoter. These data suggest that one of the mechanisms by which ANG stimulates rRNA transcription is through an epigenetic activation of rDNA promoter.


Assuntos
DNA Ribossômico/metabolismo , Epigênese Genética/fisiologia , RNA Ribossômico/metabolismo , Ribonuclease Pancreático/metabolismo , Transcrição Gênica/fisiologia , Metilação de DNA , DNA Ribossômico/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , RNA Ribossômico/genética , Ribonuclease Pancreático/genética
16.
Environ Int ; 185: 108513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382403

RESUMO

Cadmium (Cd) is a toxic heavy metal found in natural and industrial environments. Exposure to Cd can lead to various metabolic disturbances, notably disrupting glucose and lipid homeostasis. Despite this recognition, the direct impact of Cd exposure on lipid metabolism within adipose tissue, and the mechanisms underlying these effects, have not been fully elucidated. In this study, we found that Cd accumulates in adipose tissues of mice subjected to Cd exposure. Intriguingly, Cd exposure in itself did not induce significant alterations in the adipose tissue under normal conditions. However, when subjected to cold stimulation, several notable changes were observed in the mice exposed to Cd, including a reduction in the drop of body temperature, a decrease in the size of inguinal white adipose tissue (WAT), and an increase in the expression of thermogenic genes UCP1 and PRDM16. These results indicate that Cd exposure might enhance the responsiveness of adipose tissue to external stimuli and increase the energy expenditure of the tissue. RNA-seq analysis further revealed that Cd exposure altered gene expression profiles, particularly affecting peroxisome proliferator-activated receptor (PPAR)-mediated metabolic pathways, promoting metabolic remodeling in adipose tissue and resulting in the depletion of lipids stored in adipose tissue for energy. Non-targeted metabolomic analysis of mouse serum showed that Cd exposure significantly disrupted metabolites and significantly increased serum fatty acid and triglyceride levels. Correspondingly, population-level data confirmed an association between Cd exposure and elevated levels of serum total cholesterol, total triglycerides, and low-density lipoprotein cholesterol. In summary, we provide substantial evidence of the molecular events induced by Cd that are relevant to the regulation of lipid metabolism in adipose tissue. Our findings suggest that the toxic effects of Cd can impact adipocyte functionality, positioning adipose tissue as a critical target for metabolic diseases resulting from Cd exposure.


Assuntos
Tecido Adiposo Marrom , Cádmio , Camundongos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Tecido Adiposo Marrom/metabolismo , Transcriptoma , Tecido Adiposo , Perfilação da Expressão Gênica , Colesterol
17.
Cell Discov ; 10(1): 35, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548771

RESUMO

Microplastics (MPs) are contaminants ubiquitously found in the global biosphere that enter the body through inhalation or ingestion, posing significant risks to human health. Recent studies emerge that MPs are present in the bone marrow and damage the hematopoietic system. However, it remains largely elusive about the specific mechanisms by which MPs affect hematopoietic stem cells (HSCs) and their clinical relevance in HSC transplantation (HSCT). Here, we established a long-term MPs intake mouse model and found that MPs caused severe damage to the hematopoietic system. Oral gavage administration of MPs or fecal transplantation of microbiota from MPs-treated mice markedly undermined the self-renewal and reconstitution capacities of HSCs. Mechanistically, MPs did not directly kill HSCs but disrupted gut structure and permeability, which eventually ameliorated the abundance of Rikenellaceae and hypoxanthine in the intestine and inactivated the HPRT-Wnt signaling in bone marrow HSCs. Furthermore, administration of Rikenellaceae or hypoxanthine in mice as well as treatment of WNT10A in the culture system substantially rescued the MPs-induced HSC defects. Finally, we validated in a cohort of human patients receiving allogenic HSCT from healthy donors, and revealed that the survival time of patients was negatively correlated with levels of MPs, while positively with the abundance of Rikenellaceae, and hypoxanthine in the HSC donors' feces and blood. Overall, our study unleashes the detrimental roles and mechanisms of MPs in HSCs, which provides potential strategies to prevent hematopoietic damage from MPs and serves as a fundamental critique for selecting suitable donors for HSCT in clinical practice.

18.
Nat Commun ; 15(1): 5778, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987259

RESUMO

Antimicrobial proteins contribute to host-microbiota interactions and are associated with inflammatory bowel disease (IBD), but our understanding on antimicrobial protein diversity and functions remains incomplete. Ribonuclease 4 (Rnase4) is a potential antimicrobial protein with no known function in the intestines. Here we find that RNASE4 is expressed in intestinal epithelial cells (IEC) including Paneth and goblet cells, and is detectable in human and mouse stool. Results from Rnase4-deficient mice and recombinant protein suggest that Rnase4 kills Parasutterella to modulate intestinal microbiome, thereby enhancing indoleamine-2,3-dioxygenase 1 (IDO1) expression and subsequently kynurenic and xanthurenic acid production in IECs to reduce colitis susceptibility. Furthermore, deceased RNASE4 levels are observed in the intestinal tissues and stool from patients with IBD, correlating with increased stool Parasutterella. Our results thus implicate Rnase4 as an intestinal antimicrobial protein regulating gut microbiota and metabolite homeostasis, and as a potential diagnostic biomarker and therapeutic target for IBD.


Assuntos
Microbioma Gastrointestinal , Homeostase , Doenças Inflamatórias Intestinais , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal/fisiologia , Animais , Humanos , Camundongos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Colite/microbiologia , Colite/metabolismo , Colite/induzido quimicamente , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos Knockout , Ribonucleases/metabolismo , Masculino , Fezes/microbiologia , Feminino , Intestinos/microbiologia , Peptídeos Antimicrobianos/metabolismo
19.
Angiogenesis ; 16(2): 387-404, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23143660

RESUMO

Altered RNA processing is an underlying mechanism of amyotrophic lateral sclerosis (ALS). Missense mutations in a number of genes involved in RNA function and metabolisms are associated with ALS. Among these genes is angiogenin (ANG), the fifth member of the vertebrate-specific, secreted ribonuclease superfamily. ANG is an angiogenic ribonuclease, and both its angiogenic and ribonucleolytic activities are important for motor neuron health. Ribonuclease 4 (RNASE4), the fourth member of this superfamily, shares the same promoters with ANG and is co-expressed with ANG. However, the biological role of RNASE4 is unknown. To determine whether RNASE4 is involved in ALS pathogenesis, we sequenced the coding region of RNASE4 in ALS and control subjects and characterized the angiogenic, neurogenic, and neuroprotective activities of RNASE4 protein. We identified an allelic association of SNP rs3748338 with ALS and demonstrated that RNASE4 protein is able to induce angiogenesis in in vitro, ex vivo, and in vivo assays. RNASE4 also induces neural differentiation of P19 mouse embryonal carcinoma cells and mouse embryonic stem cells. Moreover, RNASE4 not only stimulates the formation of neurofilaments from mouse embryonic cortical neurons, but also protects hypothermia-induced degeneration. Importantly, systemic treatment with RNASE4 protein slowed weight loss and enhanced neuromuscular function of SOD1 (G93A) mice.


Assuntos
Neovascularização Fisiológica , Neurogênese , Ribonucleases/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Hibridização In Situ , Camundongos , Reação em Cadeia da Polimerase , Polimorfismo Genético , Ribonucleases/genética
20.
Cell Physiol Biochem ; 32(6): 1695-706, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24356419

RESUMO

BACKGROUND: Angiogenin (ANG) can translocate to the target cell nucleus and accumulate in the nucleolus to enhance rRNA transcription, thus promoting cell proliferation. However, the regulation of ANG-enhanced rRNA transcription remains unknown. Previously we identified phospholipid scramblase 1 (PLSCR1) as a potential ANG-interacting protein in yeast two-hybrid screening. METHODS: The interaction was re-confirmed in yeast cells and further verified by in vitro pull down, in vivo co-immunoprecipitation (Co-IP), fluorescent resonance energy transfer (FRET) and immunofluorescence analyses. The rRNA transcription level was determined by real-time quantitative PCR and Northern blot. RESULTS: PLSCR1 was identified as a novel ANG-interacting protein. Notably, PLSCR1 interacted with ANG in the cell nucleus and regulated rRNA transcription. Furthermore, depletion of cellular ANG expression abolished PLSCR1-enhanced rRNA transcription, which could be rescued by exogenous ANG. CONCLUSION: Our data suggest that PLSCR1 positively regulates rRNA transcription through interacting with ANG, thus deepening our understanding on rRNA transcription regulation.


Assuntos
Proteínas de Transferência de Fosfolipídeos/metabolismo , RNA Ribossômico/metabolismo , Ribonuclease Pancreático/metabolismo , Núcleo Celular/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Proteínas de Transferência de Fosfolipídeos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Ribossômico/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease Pancreático/antagonistas & inibidores , Ribonuclease Pancreático/genética , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa