Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cell ; 186(2): 279-286.e8, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36580913

RESUMO

The BQ and XBB subvariants of SARS-CoV-2 Omicron are now rapidly expanding, possibly due to altered antibody evasion properties deriving from their additional spike mutations. Here, we report that neutralization of BQ.1, BQ.1.1, XBB, and XBB.1 by sera from vaccinees and infected persons was markedly impaired, including sera from individuals boosted with a WA1/BA.5 bivalent mRNA vaccine. Titers against BQ and XBB subvariants were lower by 13- to 81-fold and 66- to 155-fold, respectively, far beyond what had been observed to date. Monoclonal antibodies capable of neutralizing the original Omicron variant were largely inactive against these new subvariants, and the responsible individual spike mutations were identified. These subvariants were found to have similar ACE2-binding affinities as their predecessors. Together, our findings indicate that BQ and XBB subvariants present serious threats to current COVID-19 vaccines, render inactive all authorized antibodies, and may have gained dominance in the population because of their advantage in evading antibodies.


Assuntos
Anticorpos Antivirais , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19 , SARS-CoV-2/classificação , SARS-CoV-2/genética
2.
Cell ; 186(4): 821-836.e13, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36750096

RESUMO

The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.


Assuntos
Endocitose , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Humanos , Camundongos , Microscopia Crioeletrônica , Rim/metabolismo , Ligantes , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
3.
Cell ; 178(3): 567-584.e19, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348886

RESUMO

The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/classificação , Linfócitos B/citologia , Linfócitos B/metabolismo , Cristalografia por Raios X , Feminino , Células HEK293 , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/classificação , HIV-1/metabolismo , Humanos , Macaca mulatta , Masculino , Peptídeos/química , Estrutura Terciária de Proteína , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
4.
Immunity ; 56(10): 2442-2455.e8, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37776849

RESUMO

SARS-CoV-2 continues to evolve, with many variants evading clinically authorized antibodies. To isolate monoclonal antibodies (mAbs) with broadly neutralizing capacities against the virus, we screened serum samples from convalescing COVID-19 patients. We isolated two mAbs, 12-16 and 12-19, which neutralized all SARS-CoV-2 variants tested, including the XBB subvariants, and prevented infection in hamsters challenged with Omicron BA.1 intranasally. Structurally, both antibodies targeted a conserved quaternary epitope located at the interface between the N-terminal domain and subdomain 1, uncovering a site of vulnerability on SARS-CoV-2 spike. These antibodies prevented viral receptor engagement by locking the receptor-binding domain (RBD) of spike in the down conformation, revealing a mechanism of virus neutralization for non-RBD antibodies. Deep mutational scanning showed that SARS-CoV-2 could mutate to escape 12-19, but such mutations are rarely found in circulating viruses. Antibodies 12-16 and 12-19 hold promise as prophylactic agents for immunocompromised persons who do not respond robustly to COVID-19 vaccines.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Cricetinae , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Receptores Virais , Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos Neutralizantes
5.
Cell ; 166(6): 1471-1484.e18, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27610571

RESUMO

The design of immunogens that elicit broadly reactive neutralizing antibodies (bnAbs) has been a major obstacle to HIV-1 vaccine development. One approach to assess potential immunogens is to use mice expressing precursors of human bnAbs as vaccination models. The bnAbs of the VRC01-class derive from the IGHV1-2 immunoglobulin heavy chain and neutralize a wide spectrum of HIV-1 strains via targeting the CD4 binding site of the envelope glycoprotein gp120. We now describe a mouse vaccination model that allows a germline human IGHV1-2(∗)02 segment to undergo normal V(D)J recombination and, thereby, leads to the generation of peripheral B cells that express a highly diverse repertoire of VRC01-related receptors. When sequentially immunized with modified gp120 glycoproteins designed to engage VRC01 germline and intermediate antibodies, IGHV1-2(∗)02-rearranging mice, which also express a VRC01-antibody precursor light chain, can support the affinity maturation of VRC01 precursor antibodies into HIV-neutralizing antibody lineages.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Imunização , Cadeias Pesadas de Imunoglobulinas/imunologia , Células Precursoras de Linfócitos B/imunologia , Animais , Anticorpos Monoclonais/genética , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Anticorpos Anti-HIV , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Concentração Inibidora 50 , Camundongos , Deleção de Sequência , Linfócitos T/imunologia
6.
Cell ; 165(2): 449-63, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26949186

RESUMO

Antibodies with ontogenies from VH1-2 or VH1-46-germline genes dominate the broadly neutralizing response against the CD4-binding site (CD4bs) on HIV-1. Here, we define with longitudinal sampling from time-of-infection the development of a VH1-46-derived antibody lineage that matured to neutralize 90% of HIV-1 isolates. Structures of lineage antibodies CH235 (week 41 from time-of-infection, 18% breadth), CH235.9 (week 152, 77%), and CH235.12 (week 323, 90%) demonstrated the maturing epitope to focus on the conformationally invariant portion of the CD4bs. Similarities between CH235 lineage and five unrelated CD4bs lineages in epitope focusing, length-of-time to develop breadth, and extraordinary level of somatic hypermutation suggested commonalities in maturation among all CD4bs antibodies. Fortunately, the required CH235-lineage hypermutation appeared substantially guided by the intrinsic mutability of the VH1-46 gene, which closely resembled VH1-2. We integrated our CH235-lineage findings with a second broadly neutralizing lineage and HIV-1 co-evolution to suggest a vaccination strategy for inducing both lineages.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Linfócitos B/imunologia , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
7.
Immunity ; 54(2): 324-339.e8, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33453152

RESUMO

Vaccine elicitation of broadly neutralizing antibodies (bnAbs) is a key HIV-research goal. The VRC01 class of bnAbs targets the CD4-binding site on the HIV-envelope trimer and requires extensive somatic hypermutation (SHM) to neutralize effectively. Despite substantial progress, vaccine-induced VRC01-class antibodies starting from unmutated precursors have exhibited limited neutralization breadth, particularly against viruses bearing glycan on loop D residue N276 (glycan276), present on most circulating strains. Here, using sequential immunization of immunoglobulin (Ig)-humanized mice expressing diverse unmutated VRC01-class antibody precursors, we elicited serum responses capable of neutralizing viruses bearing glycan276 and isolated multiple lineages of VRC01-class bnAbs, including two with >50% breadth on a 208-strain panel. Crystal structures of representative bnAbs revealed the same mode of recognition as known VRC01-class bnAbs. Structure-function studies further pinpointed key mutations and correlated their induction with specific immunizations. VRC01-class bnAbs can thus be matured by sequential immunization from unmutated ancestors to >50% breadth, and we delineate immunogens and regimens inducing key SHM.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/fisiologia , Mutação/genética , Animais , Anticorpos Amplamente Neutralizantes/genética , Modelos Animais de Doenças , Células HEK293 , Anticorpos Anti-HIV/genética , Humanos , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Hipermutação Somática de Imunoglobulina , Vacinação
8.
Cell ; 161(3): 470-485, 2015 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-25865483

RESUMO

HIV-1-neutralizing antibodies develop in most HIV-1-infected individuals, although highly effective antibodies are generally observed only after years of chronic infection. Here, we characterize the rate of maturation and extent of diversity for the lineage that produced the broadly neutralizing antibody VRC01 through longitudinal sampling of peripheral B cell transcripts over 15 years and co-crystal structures of lineage members. Next-generation sequencing identified VRC01-lineage transcripts, which encompassed diverse antibodies organized into distinct phylogenetic clades. Prevalent clades maintained characteristic features of antigen recognition, though each evolved binding loops and disulfides that formed distinct recognition surfaces. Over the course of the study period, VRC01-lineage clades showed continuous evolution, with rates of ∼2 substitutions per 100 nucleotides per year, comparable to that of HIV-1 evolution. This high rate of antibody evolution provides a mechanism by which antibody lineages can achieve extraordinary diversity and, over years of chronic infection, develop effective HIV-1 neutralization.


Assuntos
Anticorpos Neutralizantes/genética , Linfócitos B/imunologia , Evolução Molecular , Infecções por HIV/imunologia , HIV-1/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Diversidade de Anticorpos , Doença Crônica , Humanos , Leucócitos Mononucleares , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
9.
Nature ; 613(7944): 558-564, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351451

RESUMO

Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful against COVID-19 (refs. 1,2). However, because SARS-CoV-2 has evolved to become resistant to other therapeutic modalities3-9, there is a concern that the same could occur for nirmatrelvir. Here we examined this possibility by in vitro passaging of SARS-CoV-2 in nirmatrelvir using two independent approaches, including one on a large scale. Indeed, highly resistant viruses emerged from both and their sequences showed a multitude of 3CL protease mutations. In the experiment peformed with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Nevertheless, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones showed that these mutations mediated only low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (around 100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro, and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next-generation protease inhibitors.


Assuntos
Antivirais , COVID-19 , Farmacorresistência Viral , SARS-CoV-2 , Humanos , Antivirais/farmacologia , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Mutação , Tratamento Farmacológico da COVID-19
10.
Nature ; 602(7898): 676-681, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016198

RESUMO

The B.1.1.529/Omicron variant of SARS-CoV-2 was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 vaccines and antibody therapies4. This concern is amplified by the findings of our study. Here we found that B.1.1.529 is markedly resistant to neutralization by serum not only from patients who recovered from COVID-19, but also from individuals who were vaccinated with one of the four widely used COVID-19 vaccines. Even serum from individuals who were vaccinated and received a booster dose of mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies against all known epitope clusters on the spike protein, we noted that the activity of 17 out of the 19 antibodies tested were either abolished or impaired, including ones that are currently authorized or approved for use in patients. Moreover, we also identified four new spike mutations (S371L, N440K, G446S and Q493R) that confer greater antibody resistance on B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/virologia , Evasão da Resposta Imune/imunologia , SARS-CoV-2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Linhagem Celular , Convalescença , Evolução Molecular , Humanos , Soros Imunes/imunologia , Concentração Inibidora 50 , Modelos Moleculares , Mutação , Testes de Neutralização , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
11.
Nature ; 608(7923): 603-608, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35790190

RESUMO

SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.


Assuntos
Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , COVID-19 , Mutação , SARS-CoV-2 , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Humanos , Imunização Secundária , Receptores Virais/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Nature ; 604(7906): 553-556, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35240676

RESUMO

The identification of the Omicron (B.1.1.529.1 or BA.1) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Botswana in November 20211 immediately caused concern owing to the number of alterations in the spike glycoprotein that could lead to antibody evasion. We2 and others3-6 recently reported results confirming such a concern. Continuing surveillance of the evolution of Omicron has since revealed the rise in prevalence of two sublineages, BA.1 with an R346K alteration (BA.1+R346K, also known as BA.1.1) and B.1.1.529.2 (BA.2), with the latter containing 8 unique spike alterations and lacking 13 spike alterations found in BA.1. Here we extended our studies to include antigenic characterization of these new sublineages. Polyclonal sera from patients infected by wild-type SARS-CoV-2 or recipients of current mRNA vaccines showed a substantial loss in neutralizing activity against both BA.1+R346K and BA.2, with drops comparable to that already reported for BA.1 (refs. 2,3,5,6). These findings indicate that these three sublineages of Omicron are antigenically equidistant from the wild-type SARS-CoV-2 and thus similarly threaten the efficacies of current vaccines. BA.2 also exhibited marked resistance to 17 of 19 neutralizing monoclonal antibodies tested, including S309 (sotrovimab)7, which had retained appreciable activity against BA.1 and BA.1+R346K (refs. 2-4,6). This finding shows that no authorized monoclonal antibody therapy could adequately cover all sublineages of the Omicron variant, except for the recently authorized LY-CoV1404 (bebtelovimab).


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
13.
Nature ; 597(7878): 703-708, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34428777

RESUMO

SARS-CoV-2 infections have surged across the globe in recent months, concomitant with considerable viral evolution1-3. Extensive mutations in the spike protein may threaten the efficacy of vaccines and therapeutic monoclonal antibodies4. Two signature spike mutations of concern are E484K, which has a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here we report the emergence of the variant lineage B.1.526 (also known as the Iota variant5), which contains E484K, and its rise to dominance in New York City in early 2021. This variant is partially or completely resistant to two therapeutic monoclonal antibodies that are in clinical use and is less susceptible to neutralization by plasma from individuals who had recovered from SARS-CoV-2 infection or serum from vaccinated individuals, posing a modest antigenic challenge. The presence of the B.1.526 lineage has now been reported in all 50 states in the United States and in many other countries. B.1.526 rapidly replaced earlier lineages in New York, with an estimated transmission advantage of 35%. These transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, are likely to have contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrently with the rise of B.1.1.7 and ensuing variants.


Assuntos
COVID-19/virologia , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Humanos , Mutação , New York/epidemiologia , Filogenia , Filogeografia , Prevalência , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Estados Unidos/epidemiologia
14.
Nature ; 593(7857): 130-135, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684923

RESUMO

The COVID-19 pandemic has had widespread effects across the globe, and its causative agent, SARS-CoV-2, continues to spread. Effective interventions need to be developed to end this pandemic. Single and combination therapies with monoclonal antibodies have received emergency use authorization1-3, and more treatments are under development4-7. Furthermore, multiple vaccine constructs have shown promise8, including two that have an approximately 95% protective efficacy against COVID-199,10. However, these interventions were directed against the initial SARS-CoV-2 virus that emerged in 2019. The recent detection of SARS-CoV-2 variants B.1.1.7 in the UK11 and B.1.351 in South Africa12 is of concern because of their purported ease of transmission and extensive mutations in the spike protein. Here we show that B.1.1.7 is refractory to neutralization by most monoclonal antibodies against the N-terminal domain of the spike protein and is relatively resistant to a few monoclonal antibodies against the receptor-binding domain. It is not more resistant to plasma from individuals who have recovered from COVID-19 or sera from individuals who have been vaccinated against SARS-CoV-2. The B.1.351 variant is not only refractory to neutralization by most monoclonal antibodies against the N-terminal domain but also by multiple individual monoclonal antibodies against the receptor-binding motif of the receptor-binding domain, which is mostly due to a mutation causing an E484K substitution. Moreover, compared to wild-type SARS-CoV-2, B.1.351 is markedly more resistant to neutralization by convalescent plasma (9.4-fold) and sera from individuals who have been vaccinated (10.3-12.4-fold). B.1.351 and emergent variants13,14 with similar mutations in the spike protein present new challenges for monoclonal antibody therapies and threaten the protective efficacy of current vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/terapia , Evasão da Resposta Imune/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Farmacorresistência Viral/imunologia , Células HEK293 , Humanos , Evasão da Resposta Imune/genética , Imunização Passiva , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Testes de Neutralização , Domínios Proteicos/imunologia , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas/imunologia , Células Vero , Soroterapia para COVID-19 , Tratamento Farmacológico da COVID-19 , Vacinas de mRNA
15.
Nature ; 584(7821): 450-456, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32698192

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic continues, with devasting consequences for human lives and the global economy1,2. The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this coronavirus. Here we report the isolation of sixty-one SARS-CoV-2-neutralizing monoclonal antibodies from five patients infected with SARS-CoV-2 and admitted to hospital with severe coronavirus disease 2019 (COVID-19). Among these are nineteen antibodies that potently neutralized authentic SARS-CoV-2 in vitro, nine of which exhibited very high potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng ml-1. Epitope mapping showed that this collection of nineteen antibodies was about equally divided between those directed against the receptor-binding domain (RBD) and those directed against the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that overlap with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody that targets the RBD, a second that targets the NTD, and a third that bridges two separate RBDs showed that the antibodies recognize the closed, 'all RBD-down' conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Epitopos de Linfócito B/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/análise , Anticorpos Antivirais/química , Anticorpos Antivirais/ultraestrutura , Betacoronavirus/química , Betacoronavirus/ultraestrutura , COVID-19 , Infecções por Coronavirus/prevenção & controle , Microscopia Crioeletrônica , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos de Linfócito B/química , Epitopos de Linfócito B/ultraestrutura , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Modelos Moleculares , Testes de Neutralização , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/ultraestrutura
16.
Immunity ; 45(5): 1108-1121, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851912

RESUMO

Detailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain. In addition, structural analysis revealed that the orientation of N6 permitted it to avoid steric clashes with glycans, which is a common mechanism of resistance. Thus, an HIV-1-specific bNAb can achieve potent, near-pan neutralization of HIV-1, making it an attractive candidate for use in therapy and prophylaxis.


Assuntos
Anticorpos Neutralizantes/imunologia , Sítios de Ligação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Especificidade de Anticorpos , Linfócitos T CD4-Positivos/imunologia , Separação Celular , Proteína gp120 do Envelope de HIV/imunologia , Humanos
17.
J Virol ; 97(6): e0035623, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37199648

RESUMO

Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses. IMPORTANCE Similar to influenza A and B, ICV infections are seen associated with bacterial and viral co-infections which complicates the assessment of its real clinical significance. Further, the antivirals against influenza A and B viruses are ineffective against ICV which mandates the need to study the pathobiological aspects of this virus. Here we demonstrated that the respiratory tract of guinea pigs possesses specific viral receptors for ICV. We also compared the replication kinetics and pathogenesis of huICV and swIDV, as these viruses share 50% sequence identity. The tissue tropism and pathology associated with huICV in guinea pigs are analogous to the mild respiratory disease caused by ICV in humans, thereby demonstrating the suitability of guinea pigs to study ICV. Our comparative analysis revealed that huICV and swIDV replicated differentially in the guinea pigs suggesting that the type-specific genetic differences can result in the disparity of the viral shedding and tissue tropism.


Assuntos
Modelos Animais de Doenças , Gammainfluenzavirus , Cobaias , Infecções por Orthomyxoviridae , Thogotovirus , Animais , Humanos , Administração Intranasal , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Receptores Virais
18.
J Med Virol ; 96(5): e29638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682662

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused more than 676 million cases in the global human population with approximately 7 million deaths and vaccination has been proved as the most effective countermeasure in reducing clinical complications and mortality rate of SARS-CoV-2 infection in people. However, the protective elements and correlation of protection induced by vaccination are still not completely understood. Various antibodies with multiple protective mechanisms can be induced simultaneously by vaccination in vivo, thereby complicating the identification and characterization of individual correlate of protection. Recently, an increasing body of observations suggests that antibody-induced Fc-effector functions play a crucial role in combating SARS-CoV-2 infections, including neutralizing antibodies-escaping variants. Here, we review the recent progress in understanding the impact of Fc-effector functions in broadly disarming SARS-CoV-2 infectivity and discuss various efforts in harnessing this conserved antibody function to develop an effective SARS-CoV-2 vaccine that can protect humans against infections by SARS-CoV-2 virus and its variants of concern.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Fragmentos Fc das Imunoglobulinas , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Animais , Vacinação
19.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649208

RESUMO

Vaccine-based elicitation of broadly neutralizing antibodies holds great promise for preventing HIV-1 transmission. However, the key biophysical markers of improved antibody recognition remain uncertain in the diverse landscape of potential antibody mutation pathways, and a more complete understanding of anti-HIV-1 fusion peptide (FP) antibody development will accelerate rational vaccine designs. Here we survey the mutational landscape of the vaccine-elicited anti-FP antibody, vFP16.02, to determine the genetic, structural, and functional features associated with antibody improvement or fitness. Using site-saturation mutagenesis and yeast display functional screening, we found that 1% of possible single mutations improved HIV-1 envelope trimer (Env) affinity, but generally comprised rare somatic hypermutations that may not arise frequently in vivo. We observed that many single mutations in the vFP16.02 Fab could enhance affinity >1,000-fold against soluble FP, although affinity improvements against the HIV-1 trimer were more measured and rare. The most potent variants enhanced affinity to both soluble FP and Env, had mutations concentrated in antibody framework regions, and achieved up to 37% neutralization breadth compared to 28% neutralization of the template antibody. Altered heavy- and light-chain interface angles and conformational dynamics, as well as reduced Fab thermal stability, were associated with improved HIV-1 neutralization breadth and potency. We also observed parallel sets of mutations that enhanced viral neutralization through similar structural mechanisms. These data provide a quantitative understanding of the mutational landscape for vaccine-elicited FP-directed broadly neutralizing antibody and demonstrate that numerous antigen-distal framework mutations can improve antibody function by enhancing affinity simultaneously toward HIV-1 Env and FP.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Mutação , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/genética , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Anti-HIV/genética , HIV-1/genética , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
20.
J Med Virol ; 95(7): e28901, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37394780

RESUMO

The DiversitabTM system produces target specific high titer fully human polyclonal IgG immunoglobulins from transchromosomic (Tc) bovines shown to be safe and effective against multiple virulent pathogens in animal studies and Phase 1, 2 and 3 human clinical trials. We describe the functional properties of a human monoclonal antibody (mAb), 38C2, identified from this platform, which recognizes recombinant H1 hemagglutinins (HAs) and induces appreciable antibody-dependent cellular cytotoxicity (ADCC) activity in vitro. Interestingly, 38C2 monoclonal antibody demonstrated no detectable neutralizing activity against H1N1 virus in both hemagglutination inhibition and virus neutralization assays. Nevertheless, this human monoclonal antibody induced appreciable ADCC against cells infected with multiple H1N1 strains. The HA-binding activity of 38C2 was also demonstrated in flow cytometry using Madin-Darby canine kidney cells infected with multiple influenza A H1N1 viruses. Through further investigation with the enzyme-linked immunosorbent assay involving the HA peptide array and 3-dimensional structural modeling, we demonstrated that 38C2 appears to target a conserved epitope located at the HA1 protomer interface of H1N1 influenza viruses. A novel mode of HA-binding and in vitro ADCC activity pave the way for further evaluation of 38C2 as a potential therapeutic agent to treat influenza virus infections in humans.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Animais , Cães , Bovinos , Epitopos , Anticorpos Monoclonais , Subunidades Proteicas , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Imunoglobulina G , Citotoxicidade Celular Dependente de Anticorpos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa