RESUMO
The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A mRNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration.
RESUMO
BACKGROUND: The functional improvement following bone marrow stromal cells (BMSCs) transplantation after stroke is directly related to the number of engrafted cells and neurogenesis in the injured brain. Here, we tried to evaluate whether 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), a free radical scavenger, might influence BMSCs migration to ischemic brain, which could promote neurogenesis and thereby enhance treatment effects after stroke. METHODS: Rat transient middle cerebral artery occlusion (MCAO) model was established. Two separate MCAO groups were administered with either MCI-186 or phosphate-buffered saline (PBS) solution to evaluate the expression of stromal cell-derived factor-1 (SDF-1) in ischemic brain, and compared to that in sham group (n = 5/ group/time point[at 1, 3, and 7 days after operation]). The content of chemokine receptor-4 (CXCR4, a main receptor of SDF-1) at 7 days after operation was also observed on cultured BMSCs. Another four MCAO groups were intravenously administered with either PBS, MCI-186, BMSCs (2 × 106), or a combination of MCI-186 and BMSCs (n = 10/group). 5-bromo-2-deoxyuridine (BrdU) and Nestin double-immunofluorescence staining was performed to identify the engrafted BMSCs and neuronal differentiation. Adhesive-removal test and foot-fault evaluation were used to test the neurological outcome. RESULTS: MCI-186 upregulated the expression of SDF-1 in ischemic brain and CXCR4 content in BMSCs was enhanced after hypoxic stimulation. When MCAO rats were treated with either MCI-186, BMSCs, or a combination of MCI-186 and BMSCs, the neurologic function was obviously recovered as compared to PBS control group (P < 0.01 or 0.05, respectively). Combination therapy represented a further restoration, increased the number of BMSCs and Nestin+ cells in ischemic brain as compared with BMSCs monotherapy (P < 0.01). The number of engrafted-BMSCs was correlated with the density of neuronal cells in ischemic brain (r = 0.72 , P < 0.01) and the improvement of foot-fault (r = 0.70, P < 0.01). CONCLUSION: MCI-186 might promote BMSCs migration to the ischemic brain, amplify the neurogenesis, and improve the effects of cell therapy.
Assuntos
Antipirina/análogos & derivados , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/terapia , Células-Tronco Mesenquimais/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/terapia , Animais , Antipirina/uso terapêutico , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Isquemia Encefálica/metabolismo , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , Edaravone , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/terapia , Masculino , Neurogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismoRESUMO
A method for the determination of Fe, Co, Mn and Ni in synthetic diamonds by inductively coupled plasma atomic emission spectrometry ( ICP-AES) was proposed. The synthetic diamond sample was decomposed completely, while the sample was burned in air at 1000 ℃ for 10 h, and then a mixed acid of H2 SO4 , aqua regia and HClO4 was used for the dissolving the residue of the sample. In this method, the limits of detection of Fe, Co, Mn and Ni were 0. 0147, 0. 0018, 0. 0006 and 0. 0027 mg/L, respectively. Under the optimum condition, Fe, Co, Mn and Ni in synthetic diamond sample were determined. The values of RSDs (n=7) were less than 0. 5%. The recoveries of added standard were 94. 0%-105. 0%.
RESUMO
A method for the simultaneous determination of oxygen and nitrogen in synthetic diamonds by inert gas high temperature extraction-impulse heating method was proposed. The sample weight, the selection of analysis power and the calibration curves of oxygen and nitrogen were discussed. Oxygen and nitrogen in analytical samples are determined. Values of RSDs (n=7) for oxygen and nitrogen were less than 4. 5% and 4. 0% respectively. The analytical results of oxygen and nitrogen obtained by the proposed method were in good agreement with those by inert gas fusion-impulse heating method.