Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Annu Rev Biochem ; 87: 921-964, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925267

RESUMO

Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Animais , Biologia Computacional , Evolução Molecular , Humanos , Modelos Moleculares , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Subunidades Proteicas , Especificidade por Substrato
2.
Cell ; 158(6): 1362-1374, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215492

RESUMO

The unfolded protein response (UPR) is a stress response program that reprograms cellular translation and gene expression in response to proteotoxic stress in the endoplasmic reticulum (ER). One of the primary means by which the UPR alleviates this stress is by reducing protein flux into the ER via a general suppression of protein synthesis and ER-specific mRNA degradation. We report here an additional UPR-induced mechanism for the reduction of protein flux into the ER, where mRNAs that encode signal sequences are released from the ER to the cytosol. By removing mRNAs from the site of translocation, this mechanism may serve as a potent means to transiently reduce ER protein folding load and restore proteostasis. These findings identify the dynamic subcellular localization of mRNAs and translation as a selective and rapid regulatory feature of the cellular response to protein folding stress.


Assuntos
Retículo Endoplasmático/metabolismo , RNA Mensageiro/metabolismo , Resposta a Proteínas não Dobradas , Animais , Citosol/metabolismo , Ditiotreitol/metabolismo , Retículo Endoplasmático/química , Fibroblastos , Cinética , Camundongos , Fases de Leitura Aberta , Polirribossomos/metabolismo , Biossíntese de Proteínas
3.
J Biol Chem ; 293(1): 163-176, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29109149

RESUMO

Oxidative and endoplasmic reticulum (ER) stresses are hallmarks of the pathophysiology of ALS and other neurodegenerative diseases. In these stresses, different kinases phosphorylate eukaryotic initiation factor eIF2α, enabling the translation of stress response genes; among these is GADD34, the protein product of which recruits the α-isoform of protein phosphatase 1 catalytic subunit (PP1α) and eIF2α to assemble a phosphatase complex catalyzing eIF2α dephosphorylation and resumption of protein synthesis. Aberrations in this pathway underlie the aforementioned disorders. Previous observations indicating that GADD34 is induced by arsenite, a thiol-directed oxidative stressor, in the absence of eIF2α phosphorylation suggest other roles for GADD34. Here, we report that arsenite-induced oxidative stress differs from thapsigargin- or tunicamycin-induced ER stress in promoting GADD34 transcription and the preferential translation of its mRNA in the absence of eIF2α phosphorylation. Arsenite also stabilized GADD34 protein, slowing its degradation. In response to oxidative stress, but not ER stress, GADD34 recruited TDP-43, and enhanced cytoplasmic distribution and cysteine modifications of TDP-43 promoted its binding to GADD34. Arsenite also recruited a TDP-43 kinase, casein kinase-1ϵ (CK1ϵ), to GADD34. Concomitant with TDP-43 aggregation and proteolysis after prolonged arsenite exposure, GADD34-bound CK1ϵ catalyzed TDP-43 phosphorylations at serines 409/410, which were diminished or absent in GADD34-/- cells. Our findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1ϵ and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Estresse Oxidativo/fisiologia , Proteína Fosfatase 1/metabolismo , Proteinopatias TDP-43/metabolismo , Animais , Arsenitos/farmacologia , Caseína Quinase 1 épsilon/metabolismo , Proteínas de Ciclo Celular/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Proteína Fosfatase 1/deficiência
4.
Biochem Soc Trans ; 45(1): 101-112, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28202663

RESUMO

Many of the major neurodegenerative disorders are characterized by the accumulation of intracellular protein aggregates in neurons and other cells in brain, suggesting that errors in protein quality control mechanisms associated with the aging process play a critical role in the onset and progression of disease. The increased understanding of the unfolded protein response (UPR) signaling network and, more specifically, the structure and function of eIF2α phosphatases has enabled the development or discovery of small molecule inhibitors that show great promise in restoring protein homeostasis and ameliorating neuronal damage and death. While this review focuses attention on one or more eIF2α phosphatases, the wide range of UPR proteins that are currently being explored as potential drug targets bodes well for the successful future development of therapies to preserve neuronal function and treat neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Pesquisa Translacional Biomédica/métodos , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
5.
Mol Cell ; 33(5): 537-45, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19285938

RESUMO

The control of biological events requires strict regulation using complex protein phosphorylation and dephosphorylation strategies. The bulk of serine-threonine dephosphorylations are catalyzed by a handful of phosphatase catalytic subunits, giving rise to the misconception that these phosphatases are promiscuous and unregulated enzymes in vivo. The reality is much more nuanced: PP1 and PP2A, the most abundant serine-threonine phosphatases, are, in fact, families of hundreds of protein serine/threonine phosphatases, assembled from a few catalytic subunits in combination with a highly diverse array of regulators. As recent publications illustrate, these regulatory subunits confer specificity, selectivity, localization, and regulation on these important enzymes.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Animais , Domínio Catalítico , Humanos , Isoenzimas , Modelos Moleculares , Fosfoproteínas Fosfatases/química , Fosforilação , Conformação Proteica , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Especificidade por Substrato , Fator de Crescimento Transformador beta/metabolismo , Proteínas tau/metabolismo
6.
Methods ; 91: 69-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26164698

RESUMO

The development and application of ribosome profiling has markedly advanced our understanding of ribosomes and mRNA translation. The experimental approach, which relies on deep sequencing of ribosome-protected mRNA fragments generated by treatment of polyribosomes with exogenous nucleases, provides a transcriptome-wide assessment of translation. The broad application of ribosome profiling has been slowed by the complexity and expense of the protocol. Here, we provide a simplified ribosome profiling method that uses micrococcal nuclease to generate ribosome footprints in crude cellular extracts, which are then purified simply by size selection via polyacrylamide gel electrophoresis. This simplification removes the laborious or expensive purification of ribosomes that has typically been used. This direct extraction method generates gene-level ribosome profiling data that are similar to a method that includes ribosome purification. This protocol should significantly ease the barrier to entry for research groups interested in employing ribosome profiling.


Assuntos
Nuclease do Micrococo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfócitos/metabolismo
7.
J Biol Chem ; 288(46): 33146-55, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24092754

RESUMO

In mammalian cells, metabolic and environmental stress increases the phosphorylation of the eukaryotic translational initiation factor, eIF2α, and attenuates global protein synthesis. Subsequent transcriptional activation of GADD34 assembles an eIF2α phosphatase that feeds back to restore mRNA translation. Active proteasomal degradation of GADD34 protein then reestablishes the sensitivity of cells to subsequent bouts of stress. Mass spectrometry established GADD34 phosphorylation on multiple serines, threonines, and tyrosines. Phosphorylation at tyrosine 262 enhanced the rate of the GADD34 protein turnover. Substrate-trapping studies identified TC-PTP (PTPN2) as a potential GADD34 phosphatase, recognizing phosphotyrosine 262. Reduced GADD34 protein levels in TC-PTP-null MEFs following ER stress emphasized the importance of TC-PTP in determining the cellular levels of GADD34 protein. The susceptibility of TC-PTP-null MEFs to ER stress-induced apoptosis was significantly ameliorated by ectopic expression of GADD34. The data suggested that GADD34 phosphorylation on tyrosine 262 modulates endoplasmic reticulum stress signaling and cell fate.


Assuntos
Apoptose/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Proteína Fosfatase 1/metabolismo , Proteólise , Transdução de Sinais/fisiologia , Animais , Células COS , Chlorocebus aethiops , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Fosforilação/fisiologia , Proteína Fosfatase 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Tirosina/genética , Tirosina/metabolismo
8.
Res Sq ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585734

RESUMO

The integrated stress response (ISR) regulates cell fate during conditions of stress by leveraging the cell's capacity to endure sustainable and efficient adaptive stress responses. Protein phosphatase 2A (PP2A) activity modulation has been shown to be successful in achieving both therapeutic efficacy and safety across various cancer models; however, the molecular mechanisms driving its selective antitumor effects remain unclear. Here, we show for the first time that ISR plasticity relies on PP2A activation to regulate drug response and dictate cellular fate under conditions of chronic stress. We demonstrate that genetic and chemical modulation of the PP2A leads to chronic proteolytic stress and triggers an ISR to dictate cell fate. More specifically, we uncovered that the PP2A-TFE3-ATF4 pathway governs ISR cell plasticity during endoplasmic reticular and cellular stress independent of the unfolded protein response. We further show that normal cells reprogram their genetic signatures to undergo ISR-mediated adaptation and homeostatic recovery thereby successfully avoiding toxicity following PP2A-mediated stress. Conversely, oncogenic specific cytotoxicity induced by chemical modulation of PP2A is achieved by activating chronic and irreversible ISR in cancer cells. Our findings propose that a differential response to chemical modulation of PP2A is determined by intrinsic ISR plasticity, providing a novel biological vulnerability to selectively induce cancer cell death and improve targeted therapeutic efficacy.

9.
J Biol Chem ; 286(43): 37216-21, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21908609

RESUMO

Fibroblast growth factor-23 (FGF-23) inhibits sodium-dependent phosphate transport in brush border membrane vesicles derived from hormone-treated kidney slices of the mouse and in mouse proximal tubule cells by processes involving mitogen-activated protein kinase (MAPK) but not protein kinase A (PKA) or protein kinase C (PKC). By contrast, phosphate transport in brush border membrane vesicles and proximal tubule cells from sodium-hydrogen exchanger regulatory factor-1 (NHERF-1)-null mice were resistant to the inhibitory effect of FGF-23 (10(-9) m). Infection of NHERF-1-null proximal tubule cells with wild-type adenovirus-GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of FGF-23. Infection with adenovirus-GFP-NHERF-1 containing a S77A or T95D mutation also increased basal phosphate transport, but the cells remained resistant to FGF-23 (10(-9) m). Low concentrations of FGF-23 (10(-13) m) and PTH (10(-11) m) individually did not inhibit phosphate transport or activate PKA, PKC, or MAPK. When combined, however, these hormones markedly inhibited phosphate transport associated with activation of PKC and PKA but not MAPK. These studies indicate that FGF-23 inhibits phosphate transport in the mouse kidney by processes that involve the scaffold protein NHERF-1. In addition, FGF-23 synergizes with PTH to inhibit phosphate transport by facilitating the activation of the PTH signal transduction pathway.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Túbulos Renais Proximais/metabolismo , Hormônio Paratireóideo/metabolismo , Fosfatos/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Adenoviridae , Substituição de Aminoácidos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/agonistas , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/farmacologia , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Hormônio Paratireóideo/agonistas , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/farmacologia , Fosfoproteínas/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Transdução Genética
10.
J Biol Chem ; 286(24): 21687-96, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21518769

RESUMO

Stress-induced endogenous and ectopically expressed GADD34 proteins were present both in the cytoplasm and in membranes, with their membrane association showing similar biochemical properties. Deletion of N-terminal sequences in GADD34-GFP proteins highlighted an amphipathic helix, whose hydrophobic surface, specifically valine 25 and leucine 29, mediated endoplasmic reticulum (ER) localization. Substitution of leucines for three arginines on the polar surface indicated that the same helix also mediated the association of GADD34 with mitochondria. Fluorescence protease protection and chemical modification of cysteines substituted in the membrane-binding domain pointed to a monotopic insertion of GADD34 into the outer layer of the ER membrane. Fluorescence recovery after photobleaching showed that ER association retards the mobility of GADD34 in living cells. Both WT GADD34 and the mutant, V25R, effectively scaffolded the α-isoform of protein phosphatase-1 (PP1α) and enabled eIF2α dephosphorylation. However, the largely cytosolic V25R protein displayed a reduced rate of proteasomal degradation, and unlike WT GADD34, whose ectopic expression resulted in a dilated or distended ER, V25R did not modify ER morphology. These studies suggested that the association of with ER modulates intracellular trafficking and proteasomal degradation of GADD34, and in turn, its ability to modify ER morphology.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Fosfatase 1/química , Animais , Arginina/química , Células COS , Chlorocebus aethiops , Citoplasma/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Mutação , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína
11.
Nat Struct Mol Biol ; 14(5): 413-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17435765

RESUMO

Proprotein convertase subtilisin kexin type 9 (PCSK9) lowers the abundance of surface low-density lipoprotein (LDL) receptor through an undefined mechanism. The structure of human PCSK9 shows the subtilisin-like catalytic site blocked by the prodomain in a noncovalent complex and inaccessible to exogenous ligands, and that the C-terminal domain has a novel fold. Biosensor studies show that PCSK9 binds the extracellular domain of LDL receptor with K(d) = 170 nM at the neutral pH of plasma, but with a K(d) as low as 1 nM at the acidic pH of endosomes. The D374Y gain-of-function mutant, associated with hypercholesterolemia and early-onset cardiovascular disease, binds the receptor 25 times more tightly than wild-type PCSK9 at neutral pH and remains exclusively in a high-affinity complex at the acidic pH. PCSK9 may diminish LDL receptors by a mechanism that requires direct binding but not necessarily receptor proteolysis.


Assuntos
Hipercolesterolemia/genética , Mutação de Sentido Incorreto/fisiologia , Serina Endopeptidases/metabolismo , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Hipercolesterolemia/etiologia , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Ligação Proteica/genética , Conformação Proteica , Receptores de LDL/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética
12.
J Biol Chem ; 285(18): 13454-60, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20200151

RESUMO

Dopamine inhibited phosphate transport in isolated renal brush border membrane vesicles and in cultured renal proximal tubule cells from wild-type but not from NHERF-1 null mice. Co-immunoprecipitation experiments established that NHERF-1 associated with D1-like receptors. In wild-type mice, dopamine stimulated cAMP accumulation and protein kinase C (PKC) activity in renal proximal tubule cells, an effect that was abolished by SCH-23390, a D1-like receptor antagonist. In NHERF-1 null kidney tissue; however, dopamine failed to stimulate either cAMP accumulation or PKC activity. Infection of proximal tubule cells from NHERF-1 null mice with adenovirus-green fluorescent protein-NHERF-1 restored the ability of dopamine to stimulate cAMP and PKC. Finally, in (32)P-labeled wild-type proximal tubule cells and in opossum kidney cells, dopamine increased NHERF-1 phosphorylation at serine 77 of the PDZ I domain of NHERF-1, a site previously shown to attenuate binding of cellular targets including the Npt2a (sodium-dependent phosphate transporter 2a). Together, these studies establish that NHERF-1 plays a key role in dopamine signaling and is also a downstream target of D1-like receptors in the mouse kidney. These studies suggest a novel role for the PDZ adapter protein NHERF-1 in coordinating dopamine signals that inhibit renal phosphate transport.


Assuntos
Dopaminérgicos/farmacologia , Dopamina/farmacologia , Túbulos Renais Proximais/metabolismo , Fosfatos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Adenoviridae , Animais , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética , Camundongos , Camundongos Knockout , Gambás , Fosfoproteínas/genética , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/genética , Trocadores de Sódio-Hidrogênio/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
13.
J Biol Chem ; 285(33): 25134-8, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20571032

RESUMO

The phosphorylation of the sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) plays a key role in the regulation of renal phosphate transport by parathyroid hormone (PTH) and dopamine. Ser(77) in the first PDZ domain of NHERF-1 is a downstream target of both hormones. The current experiments explore the role of Thr(95), another phosphate acceptor site in the PDZ I domain, on hormone-mediated regulation of phosphate transport in the proximal tubule of the kidney. The substitution of alanine for threonine at position 95 (T95A) significantly decreased the rate and extent of in vitro phosphorylation of Ser(77) by PKC. In NHERF-1-null proximal tubule cells, neither PTH nor dopamine inhibited sodium-dependent phosphate transport. Infection of the cells with adenovirus expressing full-length WT GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of both PTH and dopamine. Infection with full-length NHERF-1 containing a T95A mutation, however, increased basal phosphate transport but not the responsiveness to either hormone. As determined by surface plasmon resonance, the substitution of serine for aspartic acid (S77D) in the PDZ I domain decreased the binding affinity to the sodium-dependent phosphate transporter 2a (Npt2a) as compared with WT PDZ I, but a T95D mutation had no effect on binding. Finally, cellular studies indicated that both PTH and dopamine treatment increased the phosphorylation of Thr(95). These studies indicate a remarkable cooperativity between the phosphorylation of Thr(95) and Ser(77) of NHERF-1 in the hormonal regulation of renal phosphate transport. The phosphorylation of Thr(95) facilitates the phosphorylation of Ser(77). This, in turn, results in the dissociation of NHERF-1 from Npt2a and a decrease in phosphate transport in renal proximal tubule cells.


Assuntos
Transporte Biológico/efeitos dos fármacos , Dopamina/farmacologia , Hormônio Paratireóideo/farmacologia , Fosfatos/metabolismo , Fosfoproteínas/metabolismo , Serina/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Treonina/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo
14.
Am J Physiol Renal Physiol ; 300(1): F231-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21048030

RESUMO

Parathyroid hormone (PTH) inhibits the reabsorption of phosphate in the renal proximal tubule by disrupting the binding of the sodium-dependent phosphate transporter 2A (Npt2a) to the adapter protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1), a process initiated by activation of protein kinase C (PKC). To gain additional insights into the dynamic sequence of events, the time course of these responses was studied in living opossum kidney (OK) cells. Using a FRET-based biosensor, we found that PTH activated intracellular PKC within seconds to minutes. In cells expressing GFP-Npt2a and mCherry-NHERF, PTH did not affect the relative abundance of NHERF-1 but there was a significant and time-dependent decrease in the Npt2a/NHERF-1 ratio. The half-time to maximal dissociation was 15 to 20 min. By contrast, PTH had no effect on the fluorescence ratio for GFP-ezrin compared with mCherry-NHERF-1 at the apical surface. These experiments establish that PTH treatment of proximal tubule OK cells leads to rapid activation of PKC with the subsequent dissociation of Npt2a/NHERF-1 complexes. The association of NHERF-1 with Ezrin and their localization at the apical membrane, however, was unperturbed by PTH, thereby enabling the rapid recruitment and membrane reinsertion of Npt2a and other NHERF-1 targets on termination of the hormone response.


Assuntos
Rim/metabolismo , Complexos Multiproteicos/metabolismo , Hormônio Paratireóideo/farmacologia , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Animais , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Feminino , Complexos Multiproteicos/efeitos dos fármacos , Gambás
15.
Am J Physiol Renal Physiol ; 300(5): F1123-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325500

RESUMO

The current experiments explore the role of dopamine in facilitating the acute increase in renal phosphate excretion in response to a high-phosphate diet. Compared with a low-phosphate (0.1%) diet for 24 h, mice fed a high-phosphate (1.2%) diet had significantly higher rates of phosphate excretion in the urine associated with a two- to threefold increase in the dopamine content of the kidney and in the urinary excretion of dopamine. Animals fed a high-phosphate diet had a significant increase in the abundance and activity of renal DOPA (l-dihydroxyphenylalanine) decarboxylase and significant reductions in renalase, monoamine oxidase A, and monoamine oxidase B. The activity of protein kinase A and protein kinase C, markers of activation of renal dopamine receptors, were significantly higher in animals fed a high-phosphate vs. a low-phosphate diet. Treatment of rats with carbidopa, an inhibitor of DOPA decarboxylase, impaired adaptation to a high-phosphate diet. These experiments indicate that the rapid adaptation to a high-phosphate diet involves alterations in key enzymes involved in dopamine synthesis and degradation, resulting in increased renal dopamine content and activation of the signaling cascade used by dopamine to inhibit the renal tubular reabsorption of phosphate.


Assuntos
Dopamina/metabolismo , Rim/metabolismo , Fósforo na Dieta/metabolismo , Adaptação Fisiológica , Análise de Variância , Animais , Inibidores das Descarboxilases de Aminoácidos Aromáticos , Carbidopa/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dopa Descarboxilase/metabolismo , Dopamina/urina , Inibidores Enzimáticos/farmacologia , Rim/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoaminoxidase/metabolismo , Fósforo na Dieta/administração & dosagem , Fósforo na Dieta/urina , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Regulação para Cima
16.
Nat Cell Biol ; 6(4): 308-18, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15048125

RESUMO

The stability of c-Myc is regulated by multiple Ras effector pathways. Phosphorylation at Ser 62 stabilizes c-Myc, whereas subsequent phosphorylation at Thr 58 is required for its degradation. Here we show that Ser 62 is dephosphorylated by protein phosphatase 2A (PP2A) before ubiquitination of c-Myc, and that PP2A activity is regulated by the Pin1 prolyl isomerase. Furthermore, the absence of Pin1 or inhibition of PP2A stabilizes c-Myc. A stable c-Myc(T58A) mutant that cannot bind Pin1 or be dephosphorylated by PP2A replaces SV40 small T antigen in human cell transformation and tumorigenesis assays. Therefore, small T antigen, which inactivates PP2A, exerts its oncogenic potential by preventing dephosphorylation of c-Myc, resulting in c-Myc stabilization. Thus, Ras-dependent signalling cascades ensure transient and self-limiting accumulation of c-Myc, disruption of which contributes to human cell oncogenesis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Genes myc/genética , Neoplasias/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sequência de Aminoácidos/genética , Animais , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/genética , Humanos , Camundongos , Mutação/genética , Peptidilprolil Isomerase de Interação com NIMA , Neoplasias/genética , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteína Fosfatase 2 , Proteínas Proto-Oncogênicas c-myc/genética , Estabilidade de RNA/genética , Ratos , Serina/metabolismo , Transdução de Sinais/genética , Treonina/metabolismo
17.
J Clin Invest ; 117(11): 3412-20, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17975671

RESUMO

Parathyroid hormone (PTH), via activation of PKC and/or protein kinase A, inhibits renal proximal tubular phosphate reabsorption by facilitating the internalization of the major sodium-dependent phosphate transporter, Npt2a. Herein, we explore the hypothesis that the effect of PTH is mediated by phosphorylation of serine 77 (S77) of the first PDZ domain of the Npt2a-binding protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1). Using recombinant polypeptides representing PDZ I, S77 of NHERF-1 is phosphorylated by PKC but not PKA. When expressed in primate kidney epithelial cells (BSC-1 cells), however, activation of either protein kinase phosphorylates S77, suggesting that the phosphorylation of PDZ I by PKC and PKA proceeds by different biochemical pathways. PTH and other activators of PKC and PKA dissociate NHERF-1/Npt2a complexes, as assayed using quantitative coimmunoprecipitation, confocal microscopy, and sucrose density gradient ultracentrifugation in mice. Murine NHERF-1-/- renal proximal tubule cells infected with adenovirus-GFP-NHERF-1 containing an S77A mutation showed significantly increased phosphate transport compared with a phosphomimetic S77D mutation and were resistant to the inhibitory effect of PTH compared with cells infected with wild-type NHERF-1. These results indicate that PTH-mediated inhibition of renal phosphate transport involves phosphorylation of S77 of the NHERF-1 PDZ I domain and the dissociation of NHERF-1/Npt2a complexes.


Assuntos
Rim/metabolismo , Hormônio Paratireóideo/metabolismo , Fosfatos/metabolismo , Fosfoproteínas/metabolismo , Serina/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Transporte Biológico/fisiologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Domínios PDZ , Fosfoproteínas/genética , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética
18.
Urol Res ; 38(4): 257-62, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20632170

RESUMO

Eukaryotic cells coordinate specific responses to hormones and growth factors by spatial and temporal organization of "signaling components." Through the formation of multiprotein complexes, cells are able to generate "signaling components" that transduce hormone signals through proteins, such as PSD-95/Dlg/ZO-1(PDZ)-containing proteins that associate by stable and dynamic interactions. The PDZ homology domain is a common protein interaction domain in eukaryotes and with greater than 500 PDZ domains identified, it is the most abundant protein interaction domain in eukaryotic cells. The NHERF (sodium hydrogen exchanger regulatory factor) proteins are PDZ domain-containing proteins that play an important role in maintaining and regulating cell function. NHERF-1 was initially identified as a brush border membrane-associated phosphoprotein essential for the cAMP/PKA-induced inhibition of the sodium hydrogen exchanger isoform 3 (NHE3). Mouse, rabbit and human renal proximal tubules also express NHERF-2 (E3KARP), a structurally related protein, which in model cell systems also binds NHE3 and mediates its inhibition by cAMP. PDZK1 (NHERF-3) and IKEPP (NHERF-4) were later identified and found to have similar homology domains, leading to their recent reclassification. Although studies have revealed similar binding partners and overlapping functions for the NHERF proteins, it is clear that there is a significant amount of specificity between them. This review focuses primarily on NHERF-1, as the prototypical PDZ protein and will give a brief summary of its role in phosphate transport and the development of some forms of nephrolithiasis.


Assuntos
Túbulos Renais Proximais/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Humanos , Túbulos Renais Proximais/ultraestrutura , Camundongos , Microscopia Confocal , Domínios PDZ/fisiologia , Fosfatos/metabolismo , Ligação Proteica , Coelhos , Transdução de Sinais
19.
Am J Physiol Renal Physiol ; 297(6): F1560-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19794105

RESUMO

Renal sodium-dependent phosphate transporter 2a (Npt2a) binds to a number of PDZ adaptor proteins including sodium-hydrogen exchanger regulatory factor-1 (NHERF-1), which regulates its retention in the apical membrane of renal proximal tubule cells and the response to parathyroid hormone (PTH). The present experiments were designed to study the lateral mobility of enhanced green fluorescent protein (EGFP)-Npt2a in proximal tubule-like opossum kidney (OK) cells using fluorescence recovery after photobleaching (FRAP) and to determine the role of PDZ binding proteins in mediating the effects of PTH. The mobile fraction of wild-type Npt2a (EGFP-Npt2a-TRL) under basal conditions was approximately 17%. Treatment of the cells with Bis(sulfosuccinimidyl) suberate, a water-soluble cross-linker, abolished recovery nearly completely, indicating that recovery represented lateral diffusion in the plasma membrane and not the exocytosis or synthesis of unbleached transporter. Substitution of the C-terminal amino acid PDZ binding sequence TRL with AAA (EGFP-Npt2a-AAA) resulted in a nearly twofold increase in percent mobile fraction of Npt2a. Treatment of cells with PTH resulted in a rapid increase in the percent mobile fraction to >30% followed by a time-dependent decrease to baseline or below. PTH had no effect on the mobility of EGFP-Npt2a-AAA expressed in native OK cells or on wild-type EGFP-Npt2a-TRL expressed in OK-H cells deficient in NHERF-1. These findings indicate that the association of Npt2a with PDZ binding proteins limits the lateral mobility of the transporter in the apical membrane of renal proximal tubule cells. Treatment with PTH, presumably by dissociating NHERF-1/Npt2a complexes, transiently increases the mobility of Npt2a, suggesting that freeing of Npt2a from the cytoskeleton precedes PTH-mediated endocytosis.


Assuntos
Recuperação de Fluorescência Após Fotodegradação , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Hormônio Paratireóideo/farmacologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Regulação para Baixo , Túbulos Renais Proximais/citologia , Gambás , Domínios PDZ , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Fatores de Tempo , Regulação para Cima
20.
ACS Chem Neurosci ; 10(8): 3575-3589, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31313908

RESUMO

Guanabenz (GBZ), an α2-adrenergic agonist, demonstrated off-target effects that restored protein homeostasis and ameliorated pathobiology in experimental models of neurodegenerative disease. However, GBZ did not directly activate the integrated stress response (ISR), and its proposed mode of action remains controversial. Utilizing an iterative in silico screen of over 10,000 GBZ analogues, we analyzed 432 representative compounds for cytotoxicity in Wild-type, PPP1R15A-/-, and PPP1R15B-/- mouse embryonic fibroblasts. Nine compounds clustering into three functional groups were studied in detail using cell biological and biochemical assays. Our studies demonstrated that PromISR-6 is a potent GBZ analogue that selectively activated ISR, eliciting sustained eIF2α phosphorylation. ISRIB, an ISR inhibitor, counteracted PromISR-6-mediated translational inhibition and reduction in intracellular mutant Huntingtin aggregates. Reduced protein synthesis combined with PromISR-6-stimulated autophagic clearance made PromISR-6 the most efficacious GBZ analogue to reduce Huntingtin aggregates and promote survival in a cellular model of Huntington's disease.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Guanabenzo/análogos & derivados , Doença de Huntington/metabolismo , Animais , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa