Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(46): 16185-200, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25245381

RESUMO

The diimine-dithiolato ambipolar complexes Pt(dbbpy)(tdt) and Pt(dmecb)(bdt) (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; tdt(2-) = 3,4-toluenedithiolate; dmecb = 4,4'-dimethoxyester-2,2'-bipyridine; bdt(2-) = benzene-1,2-dithiolate) are prepared herein. Pt(dmecb)(bdt) exhibits photoconductivity that remains constant (photocurrent density of 1.6 mA/cm(2) from a 20 nm thin film) across the entire visible region of the solar spectrum in a Schottky diode device structure. Pt(dbbpy)(tdt) acts as donor when combined with the strong nitrofluorenone acceptors 2,7-dinitro-9-fluorenone (DNF), 2,4,7-trinitro-9-fluorenone (TRNF), or 2,4,5,7-tetranitro-9-fluorenone (TENF). Supramolecular charge transfer stacks form and exhibit various donor-acceptor stacking patterns. The crystalline solids are "black absorbers" that exhibit continuous absorptions spanning the entire visible region and significant ultraviolet and near-infrared wavelengths, the latter including long wavelengths that the donor or acceptor molecules alone do not absorb. Absorption spectra reveal the persistence of donor-acceptor interactions in solution, as characterized by low-energy donor/acceptor charge transfer (DACT) bands. Crystal structures show closely packed stacks with distances that underscore intermolecular DACT. (1)H NMR provides further evidence of DACT, as manifested by upfield shifts of aromatic protons in the binary adducts versus their free components, whereas 2D nuclear Overhauser effect spectroscopy (NOESY) spectra suggest coupling between dithiolate donor protons with nitrofluorenone acceptor protons, in correlation with the solid-state stacking. The NMR spectra also show significant peak broadening, indicating some paramagnetism verified by magnetic susceptibility data. Solid-state absorption spectra reveal further red shifts and increased relative intensities of DACT bands for the solid adducts vs solution, suggesting cooperativity of the DACT phenomenon in the solid state, as further substantiated by νC-O and νN-O IR bands and solid-state tight-binding computational analysis.

2.
Materials (Basel) ; 17(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673113

RESUMO

High-frequency transmission is limited to the skin depth in metals. Because poor conductivity cannot be compensated for by increasing the conductor thickness as with DC, optimal transport properties are prerequisites for radio frequency (RF) use. Structural and chemical analyses of transmission lines printed using a traditional ink consisting of Ag nanoflakes in a dispersing phase revealed that optimized thermal treatments yielded thorough burnout of the binder, significant grain growth, elimination of the pore volume, and electrical responses that were comparable to values obtained for thermally evaporated, fully dense Ag controls. Specifically, a low DC resistivity of 2.3 µΩ·cm (1.4× bulk Ag) and RF transmission coefficients of 0.87 and 0.75 at 5 GHz and 10 GHz, respectively, were measured in the nanoflake Ag prints. Conversely, in transmission lines printed from a metal-organic decomposition ink, residual chemical contamination impeded diffusion and densification, yielding greater porosity, small grains that are pinned, and a degraded RF response. Reasonably good porosity approximations were obtained from a model based on percolation theory. The results indicate that contaminants at interfaces and pore surfaces impede diffusion, pore elimination, and full densification, and further, alter carrier dynamics and degrade RF response.

3.
Nanotechnology ; 22(20): 205703, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21444954

RESUMO

High dielectric constant aluminum oxide (Al(2)O(3)) is frequently used as the gate oxide in high electron mobility transistors and the impact of its deposition by radio frequency (RF) magnetron sputtering on the structural and electrical properties of multilayer epitaxial graphene (MLG) grown by graphitization of silicon carbide (SiC) is reported. Micro-Raman spectroscopy and temperature dependent Hall mobility measurements reveal that the processing induced changes to the structural and electrical properties of the MLG can be minimal when the oxide deposition conditions are optimal. High-resolution transmission electron microscopy (HRTEM) analysis confirms that the Al(2)O(3)/MLG interface is relatively sharp and that our thickness approximation of the MLG using angle resolved x-ray photoelectron spectroscopy (ARXPS) is accurate. An interface trap density of 5.1 × 10(10) eV(-1) cm(-2) was determined using capacitance-voltage techniques. The totality of our results indicates that ARXPS can be used as a nondestructive tool to measure the thickness of MLG, and that RF sputtered Al(2)O(3) can be used as a high dielectric (high-k) constant gate oxide in multilayer graphene based transistor applications.

4.
Nanotechnology ; 20(49): 495703, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19893156

RESUMO

Titanium was deposited onto silicon carbide (6H-SiC) using the 248 nm line of an excimer laser in a vacuum of 10(-6) Torr, and ohmic contacts were formed by annealing the structure at approximately 1000 degrees C. Further anneals between 1350 and 1430 degrees C did not degrade the formed contacts, and Raman analysis confirmed that sublimation of silicon from the near surface layers of the silicon carbide between the contact pads resulted in graphene formation after 5 min, 1428 degrees C anneals. The graphene formation was accompanied by a significant enhancement of ohmic behavior, and, it was found to be sensitive to the temperature ramp-up rate and annealing time. High-resolution transmission electron microscopy showed that the interface between the metal and silicon carbide remained sharp and free of macroscopic defects even after 30 min, 1430 degrees C anneals. The interface was determined to be carbon rich by elemental analysis, which indicates metal carbide formation. The potential of this approach for achieving ohmic contacts and graphene formation on silicon carbide substrates is discussed. A mechanism for the sequential formation of ohmic contacts then graphene is proposed.

5.
ACS Appl Mater Interfaces ; 5(7): 2387-91, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23402585

RESUMO

Battery electrodes in thin-film form are free of the binders used with traditional powder electrodes and present an ideal platform to obtain basic insight to the evolution of the electrode-electrolyte interface passivation layer, the formation of secondary phases, and the structural underpinnings of reversibility. This is particularly relevant to the not yet fully understood conversion electrode materials, which possess enormous potential for providing transformative capacity improvements in next-generation lithium-ion batteries. However, this necessitates an understanding of the electronic charge transport properties and band structure of the thin films. This work presents an investigation of the electron transport properties of iron fluoride (FeF2) thin-film electrodes for Li-ion batteries. FeF2 thin films were prepared by pulsed-laser deposition, and their phase purity was characterized by electron microscopy and diffraction. The grown materials are polycrystalline FeF2 with a P42/mnm crystallographic symmetry. Room-temperature Hall measurements reveal that as-deposited FeF2 is n-type: the Hall coefficients were negative, electron mobility was 0.33 cm2/(V s) and resistivity was 0.255 Ω cm. The electronic band diagram of FeF2 was obtained using a combination of ultraviolet photoelectron spectroscopy, photoluminescence, photoluminescence excitation and optical absorption, which revealed that FeF2 is a direct bandgap, n-type semiconductor whose band structure is characterized by a 3.4 eV bandgap, a workfunction of ∼4.51 eV, and an effective Fermi level that resides approximately 0.22 eV below the conduction band edge. We propose that the shallow donor levels at 0.22 eV are responsible for the measured n-type conductivity. The band diagram was used to understand electron transport in FeF2 thin film and FeF2-C composite electrodes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa