Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 28(41): e202201181, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35674433

RESUMO

The preparation of radicals with intense and redox-switchable absorption beyond 1000 nm is a long-standing challenge in the chemistry of functional dyes. Here we report the preparation of a series of unprecedented stable neutral nickel(II) and copper(II) complexes of "Manitoba dipyrromethenes" (MB-DIPYs) in which the organic chromophore is present in the radical-anion state. The new stable radicals have an intense absorption at λmax ∼1300 nm and can be either oxidized to regular [MII (MB-DIPY)]+ (M=Cu or Ni) or reduced to [MII (MB-DIPY)]- compounds. The radical nature of the stable [MII (MB-DIPY)] complexes was confirmed by EPR spectroscopy with additional insight into their electronic structure obtained by UV-Vis spectroscopy, electro- and spectroelectrochemistry, magnetic measurements, and X-ray crystallography. The electronic structures and spectroscopic properties of the radical-based chromophores were also probed by density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. These nickel(II) and copper(II) complexes represent the first stable radical compounds with a MB-DIPY ligand.

2.
Inorg Chem ; 60(6): 3690-3706, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33651595

RESUMO

Density Functional Theory (DFT) calculations coupled with several exchange-correlation functionals were used for the prediction of Mössbauer hyperfine parameters of 36 bis-axially coordinated iron(II) phthalocyanine complexes with the general formulas PcFeL2, PcFeL'L″, and [PcFeX2]2-, including four new compounds. Both gas-phase and PCM calculations using BPW91 and MN12L exchange-correlation functionals were found to accurately predict both Mössbauer quadrupole splittings and the correct trends in experimentally observed isomer shifts. In comparison, hybrid exchange-correlation functionals underestimated quadrupole splittings, while still accurately predicted isomer shifts. Out of ∼40 exchange-correlation functionals tested, only MN12L was found to correctly reproduce quadrupole splitting trends in the PcFeL2 complexes coordinated with phosphorus-donor axial ligands (i.e., P(OnBu)3 ≈ P(OEt)3 < PMe3 < P[(CH2O)2CH2]-p-C6H4NO2 < PEt3 ≈ PnBu3). Natural Bond Orbital (NBO) analysis was successfully used to explain the general trends in the observed quadrupole splitting for all compounds of interest. In particular, the general trends in the quadrupole splitting correlate well with the axial ligand dependent, NBO-predicted population of the 3dz2 orbital of the Fe ion and are reflective of the hypothesis proposed by Ohya and co-workers ( Inorg. Chem., 1984, 23, 1303) on the adaptability of the phthalocyanine's π-system toward Fe-Lax interactions. The first X-ray crystal structure of a PcFeL2 complex with axial phosphine ligands is also reported.

3.
Adv Mater ; 34(8): e2107868, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34837257

RESUMO

Multi-metal oxide (MMO) materials have significant potential to facilitate various demanding reactions by providing additional degrees of freedom in catalyst design. However, a fundamental understanding of the (electro)catalytic activity of MMOs is limited because of the intrinsic complexity of their multi-element nature. Additional complexities arise when MMO catalysts have crystalline structures with two different metal site occupancies, such as the spinel structure, which makes it more challenging to investigate the origin of the (electro)catalytic activity of MMOs. Here, uniform-sized multi-metal spinel oxide nanoparticles composed of Mn, Co, and Fe as model MMO electrocatalysts are synthesized and the contributions of each element to the structural flexibility of the spinel oxides are systematically studied, which boosts the electrocatalytic oxygen reduction reaction (ORR) activity. Detailed crystal and electronic structure characterizations combined with electrochemical and computational studies reveal that the incorporation of Co not only increases the preferential octahedral site occupancy, but also modifies the electronic state of the ORR-active Mn site to enhance the intrinsic ORR activity. As a result, nanoparticles of the optimized catalyst, Co0.25 Mn0.75 Fe2.0 -MMO, exhibit a half-wave potential of 0.904 V (versus RHE) and mass activity of 46.9 A goxide -1 (at 0.9 V versus RHE) with promising stability.

4.
RSC Adv ; 11(6): 3547-3555, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424319

RESUMO

The synthesis, structures and electronic characterization of three strongly coloured, pseudo-octahedral Ni(ii) complexes supported by redox-active diarylamido ligands featuring benzannulated N-heterocyclic donor arms are reported. The S = 1 paramagnets each present two singly occupied molecular orbitals (SOMOs) identified as metal-based by density functional theory (DFT), consistent with solid-state and solution magnetism measurements. Upon applying oxidative potentials, non-Aufbau behaviour leads to the appearance of intense and well-defined absorption features extending into the near IR (NIR). The attribution of these features to the onset of aminyl radical character through ligand-based redox is corroborated by exceptionally strong intervalence charge-transfer (IVCT) transitions ascribed to electronic communication between two Namido moieties across a Ni(ii) bridge.

5.
J Phys Condens Matter ; 33(9): 095802, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33126226

RESUMO

The photo-spin-voltaic effect is revealed by the presence of a spin voltage generated by photons when a non-magnetic metal (e.g., Pt) is in close proximity to a ferrimagnetic insulator (e.g., Y3Fe5O12 (YIG)). This is attributed to the excited electrons and holes diffusing from the proximized layer near the interface to the metallic surface. By using a dual-ion-beam sputtering deposition technique, a metallic PtMn layer was deposited on YIG /Gd3Ga5O12 (GGG) (111) substrates. We report on the photo-induced-spin voltaic effect in a PtMn/YIG/GGG heterostructure. The sign of the photo-generated voltage was found to switch with magnetic field polarity and its intensity to decrease with increasing PtMn thickness. This indicates that spin-polarized electrons are confined near the interface in the metal. Photo-excitation of these carriers, together with spin-orbit coupling with Pt atoms, is at the origin of the measured transverse voltage. The design may find applications in antiferromagnetic spintronics.

6.
Sci Rep ; 10(1): 20990, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268828

RESUMO

We have synthesized three different shapes of [Formula: see text] nanoparticles to investigate the relationships between the surface Co[Formula: see text] and Co[Formula: see text] bonding quantified by exploiting the known exposed surface planes, terminations, and coordiations of [Formula: see text] nanoparticle spheres, cubes and plates. Subsequently this information is related to the unusual behaviour observed in the magnetism. The competition of exchange interactions at the surface provides the mechanism for different behaviours in the shapes. The cubes display weakened antiferromagnetic interactions in the form of a spin-flop that occurs at the surface, while the plates show distinct ferromagnetic behaviour due to the strong competition between the interactions. We elucidate the spin properties which are highly sensitive to bonding and crystal field environments. This work provides a new window into the mechanisms behind surface magnetism.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa