Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 191(3): 685-696, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31535253

RESUMO

There is limited understanding of the combined effects of discrete climate extremes and chronic environmental changes on ecosystem processes and functioning. We assessed the interactions of extreme drought timing (45 days, in spring or summer) and nitrogen (N) addition in a full factorial field experiment in a Leymus chinensis-dominated meadow steppe in northeast China. We evaluated the resistance and recovery of the grassland (calculated in terms of aboveground biomass) to these two drought events. The spring drought reduced aboveground biomass by 28% in the unfertilized plots and by 33% in the fertilized plots, and the effects persisted during the subsequent post-drought period within the same growing season; however, the summer drought had no significant influence on aboveground biomass. Although there were no significant interactive effects between drought timing and N addition, we observed a potential trend of N addition increasing the proportion of aboveground biomass suppressed by spring drought but not summer drought. Moreover, the drought resistance of the aboveground biomass was positively correlated with the response of the belowground biomass to drought. One year after the extreme drought events, the spring drought effects on aboveground and belowground biomass were negligible. Our results indicate that the drought sensitivity of productivity likely depends on the phenological and morphological traits of the single highly dominant species (Leymus chinensis) in this meadow steppe.


Assuntos
Secas , Ecossistema , Biomassa , China , Pradaria , Poaceae
2.
Front Plant Sci ; 13: 1071511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726673

RESUMO

In the context of global change, the frequency of precipitation pulses is expected to decrease while nitrogen (N) addition is expected to increase, which will have a crucial effect on soil C cycling processes as well as methane (CH4) fluxes. The interactive effects of precipitation pulses and N addition on ecosystem CH4 fluxes, however, remain largely unknown in grassland. In this study, a series of precipitation pulses (0, 5, 10, 20, and 50 mm) and long-term N addition (0 and 10 g N m-2 yr-1, 10 years) was simulated to investigate their effects on CH4 fluxes in a semi-arid grassland. The results showed that large precipitation pulses (10 mm, 20 mm, and 50 mm) had a negative pulsing effect on CH4 fluxes and relatively decreased the peak CH4 fluxes by 203-362% compared with 0 mm precipitation pulse. The large precipitation pulses significantly inhibited CH4 absorption and decreased the cumulative CH4 fluxes by 68-88%, but small precipitation pulses (5 mm) did not significantly alter it. For the first time, we found that precipitation pulse size increased cumulative CH4 fluxes quadratically in both control and N addition treatments. The increased soil moisture caused by precipitation pulses inhibited CH4 absorption by suppressing CH4 uptake and promoting CH4 release. Nitrogen addition significantly decreased the absorption of CH4 by increasing NH4 +-N content and NO3 --N content and increased the production of CH4 by increasing aboveground biomass, ultimately suppressing CH4 uptake. Surprisingly, precipitation pulses and N addition did not interact to affect CH4 uptake because precipitation pulses and N addition had an offset effect on pH and affected CH4 fluxes through different pathways. In summary, precipitation pulses and N addition were able to suppress the absorption of CH4 from the atmosphere by soil, reducing the CH4 sink capacity of grassland ecosystems.

3.
Sci Rep ; 8(1): 4543, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540738

RESUMO

The effects of manipulating nitrogen (N) deposition, with the use of a single form of N, on soil enzyme activities have been extensively studied. However, the impacts varying the N type (organic vs. inorganic) on soil hydrolytic enzyme activities have been less studied. We performed a 60 day incubation experiment using saline-alkaline soil. The objectives were to explore how the microbial biomass and enzyme activities respond to a mixed N addition at different inorganic to organic N ratios. The experimental design was full factorial, with two rates of N addition (10 g N m-2 and 20 g N m-2) and four ratios of N addition (inorganic N:organic N = 10:0, 7:3, 3:7, 1:9). The results showed that N addition stimulated enzyme activities involved in C, N and P cycling. Enzyme activities under mixed N addition increased compared to those under single inorganic N addition in most cases. The inorganic to organic N ratios interacted with the N addition rate to affect the enzyme activities. Our results suggest that various N fertilizers, which have different inorganic to organic N ratios, should be applied when evaluating the effects of atmospheric N deposition on the soil microbial enzyme activities and ecosystem structure and function.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Solo/química , Álcalis/química , Bactérias/crescimento & desenvolvimento , Biomassa , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Hidrólise , Nitrogênio/química , Sais/química , Microbiologia do Solo
4.
Front Plant Sci ; 9: 254, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535757

RESUMO

It is not clear yet how extreme drought and nitrogen (N) deposition influence grassland ecosystem functions when they are considered together, especially in complex field conditions. To explore the response of the Leymus chinensis meadow ecosystem to manipulated extreme drought (45 days), N addition and their interaction, we measured leaf photosynthetic characteristics, aboveground phytomass on the community level and ecosystem C exchange in different treatments at the middle and the end of the drought period. The extreme drought treatment decreased the leaf net CO2 assimilation rate and ecosystem C exchange [gross ecosystem productivity (GEP), ecosystem respiration and net ecosystem CO2 exchange]. In contrast, the N addition treatment increased aboveground phytomass, GEP and net ecosystem CO2 exchange. The effects of N addition on the drought susceptibility of the L. chinensis meadow ecosystem varied with drought severity. The N addition treatment alleviated drought-induced suppression of CO2 exchange at the leaf and ecosystem levels in the middle of the drought period, whereas it exacerbated drought-induced suppression of the CO2 exchange and aboveground phytomass on the community level at the end of the drought period. Given that dominance by L. chinensis is a characteristic of the studied ecosystem, knowledge of the traits of L. chinensis and its response to multiple global change drivers will be crucial for predicting future ecosystem functions. Furthermore, increasing N deposition may affect the response of the L. chinensis meadow ecosystem to further droughts by increasing carbon allocation to roots and therefore root-shoot ratios.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa