Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Haematol ; 201(4): 704-717, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36755409

RESUMO

Amino acids in the bone marrow microenvironment (BMME) are a critical factor for multiple myeloma (MM) progression. Here, we have determined that proline is elevated in BMME of MM patients and links to poor prognosis in MM. Moreover, exogenous proline regulates MM cell proliferation and drug resistance. Elevated proline in BMME is due to bone collagen degradation and abnormal expression of the key enzyme of proline catabolism, proline dehydrogenase (PRODH). PRODH is downregulated in MM patients, mainly as a result of promoter hypermethylation with high expression of DNMT3b. Thus, overexpression of PRODH suppresses cell proliferation and drug resistance of MM and exhibits therapeutic potential for treatment of MM. Altogether, we identify proline as a key metabolic regulator of MM, unveil PRODH governing MM progression and provide a promising therapeutic strategy for MM treatment.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Prolina/metabolismo , Regulação para Baixo , Resistência a Medicamentos , Proliferação de Células , Microambiente Tumoral
2.
Cell Metab ; 36(1): 159-175.e8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113887

RESUMO

The gut microbiome has been found to play a crucial role in the treatment of multiple myeloma (MM), which is still considered incurable due to drug resistance. In previous studies, we demonstrated that intestinal nitrogen-recycling bacteria are enriched in patients with MM. However, their role in MM relapse remains unclear. This study highlights the specific enrichment of Citrobacter freundii (C. freundii) in patients with relapsed MM. Through fecal microbial transplantation experiments, we demonstrate that C. freundii plays a critical role in inducing drug resistance in MM by increasing levels of circulating ammonium. The ammonium enters MM cells through the transmembrane channel protein SLC12A2, promoting chromosomal instability and drug resistance by stabilizing the NEK2 protein. We show that furosemide sodium, a loop diuretic, downregulates SLC12A2, thereby inhibiting ammonium uptake by MM cells and improving progression-free survival and curative effect scores. These findings provide new therapeutic targets and strategies for the intervention of MM progression and drug resistance.


Assuntos
Microbioma Gastrointestinal , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Bortezomib/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/uso terapêutico , Membro 2 da Família 12 de Carreador de Soluto/farmacologia
3.
Front Genet ; 12: 685914, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349781

RESUMO

Distant hybridization can combine whole genomes from parent species and result in changes in the phenotypes and genotypes in hybrids. The characteristics of many hybrid fishes with even number of chromosomes have been reported, but the hybrids with odd number chromosomes are rarely reported. Blunt snout bream (Megalobrama amblycephala, BSB, 2n = 48) and rare gudgeon (Gobiocypris rarus, RG, 2n = 50) belong to two different subfamilies and have quite different biological characteristics. In this study, we obtain the hybrids (BR) derived from the inter-subfamily hybridization of female BSB and male RG. We investigate the fertilization rate, hatching rate, morphological traits, chromosomal numbers, DNA content, growth rates, and 5S rDNA in the BR. The results show that the BR is an allodiploid fish with 49 chromosomes, and all the measurable traits are significantly different (p < 0.05) among BR, BSB, and BR. Interestingly, the upper part of the BR body color is similar to BSB (gray), the lower part of the BR body color is similar to RG (light yellow), and the BR inherits a unique light yellow wide longitudinal band from the RG. Furthermore, the BR has a fast growth rate compared with RG. The 5S rDNA of the BR inherits the specific bands of its parental 5S rDNA respectively and has some mutations, which show obvious recombination, heredity, and variability in BR. This study will be of great significance in fish genetic breeding.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa