RESUMO
Spermiogenesis is a highly orchestrated developmental process during which chromatin condensation decouples transcription from translation. Spermiogenic mRNAs are transcribed earlier and stored in a translationally inert state until needed for translation; however, it remains largely unclear how such repressed mRNAs become activated during spermiogenesis. We previously reported that the MIWI/piRNA machinery is responsible for mRNA elimination during late spermiogenesis in preparation for spermatozoa production. Here we unexpectedly discover that the same machinery is also responsible for activating translation of a subset of spermiogenic mRNAs to coordinate with morphological transformation into spermatozoa. Such action requires specific base-pairing interactions of piRNAs with target mRNAs in their 3' UTRs, which activates translation through coupling with cis-acting AU-rich elements to nucleate the formation of a MIWI/piRNA/eIF3f/HuR super-complex in a developmental stage-specific manner. These findings reveal a critical role of the piRNA system in translation activation, which we show is functionally required for spermatid development.
Assuntos
Proteínas Argonautas/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Interferente Pequeno/metabolismo , Espermatogênese , Regiões 3' não Traduzidas , Animais , Proteínas Argonautas/genética , Pareamento de Bases , Células Cultivadas , Proteína Semelhante a ELAV 1/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genéticaRESUMO
Genetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility. Mechanistically, we show that MIWI binds the histone ubiquitin ligase RNF8 in a Piwi-interacting RNA (piRNA)-independent manner, and MIWI stabilization sequesters RNF8 in the cytoplasm of late spermatids. The resulting aberrant sperm show histone retention, abnormal morphology, and severely compromised activity, which can be functionally rescued via blocking RNF8-MIWI interaction in spermatids with an RNF8-N peptide. Collectively, our findings identify Piwi as a factor in human infertility and reveal its role in regulating the histone-to-protamine exchange during spermiogenesis.
Assuntos
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Azoospermia/genética , Mutação , Animais , Azoospermia/metabolismo , Cromatina/metabolismo , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Histonas/metabolismo , Humanos , Íntrons , Masculino , Camundongos , Linhagem , Protaminas/metabolismo , Proteólise , Espermatogênese , Ubiquitina-Proteína Ligases , UbiquitinaçãoRESUMO
U6 snRNA, as an essential component of the catalytic core of the pre-mRNA processing spliceosome, is heavily modified post-transcriptionally, with 2'-O-methylation being most common. The role of these modifications in pre-mRNA splicing as well as their physiological function in mammals have remained largely unclear. Here we report that the La-related protein LARP7 functions as a critical cofactor for 2'-O-methylation of U6 in mouse male germ cells. Mechanistically, LARP7 promotes U6 loading onto box C/D snoRNP, facilitating U6 2'-O-methylation by box C/D snoRNP. Importantly, ablation of LARP7 in the male germline causes defective U6 2'-O-methylation, massive alterations in pre-mRNA splicing, and spermatogenic failure in mice, which can be rescued by ectopic expression of wild-type LARP7 but not an U6-loading-deficient mutant LARP7. Our data uncover a novel role of LARP7 in regulating U6 2'-O-methylation and demonstrate the functional requirement of such modification for splicing fidelity and spermatogenesis in mice.
Assuntos
Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espermatogênese , Espermatozoides/metabolismo , Spliceossomos/metabolismo , Animais , Fertilidade , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Masculino , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Precursores de RNA/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Transdução de Sinais , Espermatogênese/genética , Spliceossomos/genéticaRESUMO
Eukaryotic translation initiation factor 4E (eIF4E) mediates cap-dependent translation. Genetic and inhibitor studies show that eIF4E expression is required for the successful transition from maternal to embryonic control of mouse embryo development. eIF4E was present in the oocyte and in the cytoplasm soon after fertilization and during each stage of early development. Functional knockout (Eif4e-/-) by PiggyBac [Act-RFP] transposition resulted in peri-implantation embryonic lethality because of the failure of normal epiblast formation. Maternal stores of eIF4E supported development up to the two- to four-cell stage, after which new expression occurred from both maternal and paternal inherited alleles. Inhibition of the maternally acquired stores of eIF4E (using the inhibitor 4EGI-1) resulted in a block at the two-cell stage. eIF4E activity was required for new protein synthesis in the two-cell embryo and Eif4e-/- embryos had lower translational activity compared with wild-type embryos. eIF4E-binding protein 1 (4E-BP1) is a hypophosphorylation-dependent negative regulator of eIF4E. mTOR activity was required for 4E-BP1 phosphorylation and inhibiting mTOR retarded embryo development. Thus, this study shows that eIF4E activity is regulated at key embryonic transitions in the mammalian embryo and is essential for the successful transition from maternal to embryonic control of development.
Assuntos
Desenvolvimento Embrionário/genética , Fator de Iniciação 4E em Eucariotos/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Elementos de DNA Transponíveis , Embrião de Mamíferos , Fator de Iniciação 4E em Eucariotos/metabolismo , Imunofluorescência , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Biossíntese de ProteínasRESUMO
PURPOSE: Inflammatory breast cancer (IBC), a rare and highly aggressive form of breast cancer, accounts for 10% of breast cancer-related deaths. Previous omics studies of IBC have focused solely on one of genomics or transcriptomics and did not discover common differences that could distinguish IBC from non-IBC. METHODS: Seventeen IBC patients and five non-IBC patients as well as additional thirty-three Asian breast cancer samples from TCGA-BRCA were included for the study. We performed whole-exon sequencing (WES) to investigate different somatic genomic alterations, copy number variants, and large structural variants between IBC and non-IBC. Bulk RNA sequencing (RNA-seq) was performed to examine the differentially expressed genes, pathway enrichment, and gene fusions. WES and RNA-seq data were further investigated in combination to discover genes that were dysregulated in both genomics and transcriptomics. RESULTS: Copy number variation analysis identified 10 cytobands that showed higher frequency in IBC. Structural variation analysis showed more frequent deletions in IBC. Pathway enrichment and immune infiltration analysis indicated increased immune activation in IBC samples. Gene fusions including CTSC-RAB38 were found to be more common in IBC. We demonstrated more commonly dysregulated RAS pathway in IBC according to both WES and RNA-seq. Inhibitors targeting RAS signaling and its downstream pathways were predicted to possess promising effects in IBC treatment. CONCLUSION: We discovered differences unique in Asian women that could potentially explain IBC etiology and presented RAS signaling pathway as a potential therapeutic target in IBC treatment.
Assuntos
Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Genômica , Neoplasias Inflamatórias Mamárias , Humanos , Feminino , Neoplasias Inflamatórias Mamárias/genética , Neoplasias Inflamatórias Mamárias/patologia , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Sequenciamento do Exoma , Biomarcadores Tumorais/genética , Transcriptoma , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adulto , IdosoRESUMO
Psoriasis is a chronic systemic inflammatory cutaneous disease. Where the immune system plays an important role in its pathogenesis, with key inflammatory intercellular signalling peptides and proteins including IL-17 and IL-23. The psychoneurological system also figures prominently in development of psoriasis. There is a high prevalence of comorbidity between psoriasis and mental health disorders such as depression, anxiety and mania. Patients with psoriasis often suffer from pathological pain in the lesions, and their neurological accidents could improve the lesions in innervated areas. The immune system and the psychoneurological system interact closely in the pathogenesis of psoriasis. Patients with psoriasis exhibit abnormal levels of neuropeptides both in circulating and localized lesion, acting as immunomodulators involved in the inflammatory response. Moreover, receptors for inflammatory factors are expressed in both peripheral and central nervous systems (CNSs), suggesting that nervous system can receive and be influenced by signals from immune system. Key inflammatory intercellular signalling peptides and proteins in psoriasis, such as IL-17 and IL-23, can be involved in sensory signalling and may affect synaptic plasticity and the blood-brain barrier of CNS through the circulation. This review provides an overview of the multiple effects on the peripheral and CNS under conditions of systemic inflammation in psoriasis, providing a framework and inspiration for in-depth studies of neuroimmunomodulation in psoriasis.
Assuntos
Sistema Nervoso Central , Interleucina-17 , Interleucina-23 , Psoríase , Psoríase/metabolismo , Psoríase/imunologia , Humanos , Sistema Nervoso Central/metabolismo , Interleucina-23/metabolismo , Interleucina-17/metabolismo , Neuroimunomodulação , Neuropeptídeos/metabolismo , Inflamação/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Transdução de SinaisRESUMO
BACKGROUND: Thyroid cancer is a common thyroid malignancy. The majority of thyroid lesion needs intraoperative frozen pathology diagnosis, which provides important information for precision operation. As digital whole slide images (WSIs) develop, deep learning methods for histopathological classification of the thyroid gland (paraffin sections) have achieved outstanding results. Our current study is to clarify whether deep learning assists pathology diagnosis for intraoperative frozen thyroid lesions or not. METHODS: We propose an artificial intelligence-assisted diagnostic system for frozen thyroid lesions that applies prior knowledge in tandem with a dichotomous judgment of whether the lesion is cancerous or not and a quadratic judgment of the type of cancerous lesion to categorize the frozen thyroid lesions into five categories: papillary thyroid carcinoma, medullary thyroid carcinoma, anaplastic thyroid carcinoma, follicular thyroid tumor, and non-cancerous lesion. We obtained 4409 frozen digital pathology sections (WSI) of thyroid from the First Affiliated Hospital of Sun Yat-sen University (SYSUFH) to train and test the model, and the performance was validated by a six-fold cross validation, 101 papillary microcarcinoma sections of thyroid were used to validate the system's sensitivity, and 1388 WSIs of thyroid were used for the evaluation of the external dataset. The deep learning models were compared in terms of several metrics such as accuracy, F1 score, recall, precision and AUC (Area Under Curve). RESULTS: We developed the first deep learning-based frozen thyroid diagnostic classifier for histopathological WSI classification of papillary carcinoma, medullary carcinoma, follicular tumor, anaplastic carcinoma, and non-carcinoma lesion. On test slides, the system had an accuracy of 0.9459, a precision of 0.9475, and an AUC of 0.9955. In the papillary carcinoma test slides, the system was able to accurately predict even lesions as small as 2 mm in diameter. Tested with the acceleration component, the cut processing can be performed in 346.12 s and the visual inference prediction results can be obtained in 98.61 s, thus meeting the time requirements for intraoperative diagnosis. Our study employs a deep learning approach for high-precision classification of intraoperative frozen thyroid lesion distribution in the clinical setting, which has potential clinical implications for assisting pathologists and precision surgery of thyroid lesions.
Assuntos
Aprendizado Profundo , Secções Congeladas , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/cirurgia , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/cirurgia , Carcinoma Papilar/patologia , Carcinoma Papilar/cirurgia , Carcinoma Papilar/diagnóstico , Adenocarcinoma Folicular/patologia , Adenocarcinoma Folicular/diagnóstico , Adenocarcinoma Folicular/cirurgia , Glândula Tireoide/patologia , Glândula Tireoide/cirurgia , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/cirurgia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Período Intraoperatório , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/diagnóstico , Carcinoma Anaplásico da Tireoide/cirurgiaRESUMO
Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0-2.5 g/L KNO3). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment.
Assuntos
Bactérias , Resistência Microbiana a Medicamentos , Eutrofização , Transferência Genética Horizontal , Microalgas , Simbiose , Microalgas/genética , Microalgas/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Chlorella/genética , Chlorella/efeitos dos fármacos , NitrogênioRESUMO
OBJECTIVE: To evaluate knee biomechanics of patients about 12 months after anterior cruciate ligament (ACL) reconstruction during cutting and determine the abnormal biomechanical characteristics. METHODS: Sixteen males about 12 months after ACL reconstruction were recruited for this study. Three-dimensional kinematic and kinetic data were collected during cutting movement. Knee joint angles and moments were calculated. Paired t-tests were used to compare the differences in knee biomechanics between the surgical leg and nonsurgical leg. RESULTS: The peak posterior ground reaction force (surgical leg: 0.380±0.071; nonsurgical leg: 0.427±0.069, P = 0.003) and vertical ground reaction force (surgical leg: 1.996±0.202, nonsurgical leg: 2.110±0.182, P = 0.001) were significantly smaller in the surgical leg than in the nonsurgical leg. When compared with the uninjured leg, the surgical leg demonstrated a smaller knee flexion angle (surgical leg: 38.3°± 7.4°; nonsurgical leg: 42.8°± 7.9°, P < 0.001) and larger external rotation angle (surgical leg: 10.3°± 2.4°; nonsurgical leg: 7.7°± 2.1°, P = 0.008). The surgical leg also demonstrated a smaller peak knee extension moment (surgical leg: 0.092 ± 0.031; nonsurgical leg: 0.133 ± 0.024, P < 0.001) and peak knee external rotation moment (surgical leg: 0.005 ± 0.004; nonsurgical leg: 0.008 ± 0.004, P = 0.015) when compared with the nonsurgical leg. CONCLUSION: The individuals with ACL reconstruction mainly showed asymmetrical movements in the sagittal and horizontal planes. The surgical leg demonstrated a smaller peak knee flexion angle, knee extension moment, and knee external rotation moment, with greater knee external rotation angle.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Articulação do Joelho , Amplitude de Movimento Articular , Humanos , Masculino , Fenômenos Biomecânicos , Articulação do Joelho/fisiopatologia , Movimento/fisiologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Adulto , Adulto Jovem , Ligamento Cruzado Anterior/cirurgia , Ligamento Cruzado Anterior/fisiopatologia , RotaçãoRESUMO
Before fertilization, sperms adhere to oviductal epithelium cells, and only a restrictive number of winner sperms can escape to reach the egg. To study the sperm escape behavior from the oviductal surface, we developed a microfluidic chip to fabricate an adhesive surface and to create a gradient of progesterone (P4) for mimicking the oviduct microenvironment in vivo. We identified three sperm motion patterns in such a microenvironmentâanchored spin, run-and-spin, and escaped mode. By using kinetic analysis, we verified the hypothesis that the responsive rotation energy anchored with the adhered sperm head determines whether the sperm is trapped or detaching, which is defined as the hammer flying strategy of successful escape after accumulating energy in the process of rotating. Intriguingly, this hammer-throw escaping is able to be triggered by the P4 biochemical stimulation. Our results revealed the tangled process of sperm escape before fertilization in the ingenious microfluidic system.
Assuntos
Biomimética , Sêmen , Humanos , Feminino , Masculino , Animais , Cinética , Espermatozoides , OviductosRESUMO
Multiple morphological abnormalities of the flagella, a severe form of asthenozoospermia, can lead to male infertility. Recent studies have implicated an association between human CFAP70 deficiency and multiple morphological abnormalities of the flagella; however, the underlying biological mechanism and supporting experimental evidence in animal models remain unclear. To address this gap, we used CRISPR/Cas9 technology to generate Cfap70-deficient mice to investigate the relationship between Cfap70 deficiency and multiple morphological abnormalities of the flagella. Our findings show that the loss of CFAP70 leads to multiple morphological abnormalities of the flagella and spermiogenesis defects. Specifically, the lack of CFAP70 impairs sperm flagellum biogenesis and head shaping during spermiogenesis. Late-step spermatids from Cfap70-deficient mouse testis exhibited club-shaped sperm heads and abnormal disassembly of the manchette. Furthermore, we found that CFAP70 interacts with DNAI1 and DNAI2; Cfap70 deficiency also reduces the level of AKAP3 in sperm flagella, indicating that CFAP70 may participate in the flagellum assembly and transport of flagellar components. These findings provide compelling evidence implicating Cfap70 as a causative gene of multiple morphological abnormalities of the flagella and highlight the consequences of CFAP70 loss on flagellum biogenesis.
Assuntos
Infertilidade Masculina , Sêmen , Masculino , Animais , Humanos , Camundongos , Mutação , Flagelos/genética , Infertilidade Masculina/genética , Cauda do Espermatozoide , Espermatozoides , Proteínas de Ancoragem à Quinase A/genéticaRESUMO
STUDY QUESTION: What are the differences in gene expression of cumulus cells (CCs) between young women with diminished ovarian reserve (DOR) and those of similar age with normal ovarian reserve (NOR)? SUMMARY ANSWER: Gene expression and metabolome profiling analysis demonstrate that the de novo serine synthesis pathway (SSP) is increased in the CCs of young women with DOR. WHAT IS KNOWN ALREADY: The incidence of DOR has risen, tending to present at younger ages. Its mechanisms and aetiologies are still poorly understood. Abnormal metabolism is present in luteinized CCs of patients with DOR. Previous studies have revealed that mitochondrial dysfunction and impaired oxidative phosphorylation in CCs are related to DOR in women of advanced age. The pathogenic mechanisms likely differ between young women with DOR and cases associated with advanced maternal age. Several studies have examined amino acid metabolism in the follicle, with a focus on embryo development, but less information is available about CCs. The physiological significance of de novo serine synthesis in follicles and oocytes remains largely unknown. STUDY DESIGN, SIZE, DURATION: CC samples were obtained from 107 young infertile women (age <38 years) undergoing ICSI, from July 2017 to June 2019, including 54 patients with DOR and 53 patients with NOR. PARTICIPANTS/MATERIALS, SETTING, METHODS: Oocyte development data were analysed retrospectively. Comprehensive genome-wide transcriptomics of CCs was performed. Differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to categorize the functions of the DEGs and identify significantly enriched pathways. The transcript and protein levels of key enzymes involved in serine synthesis were verified in additional samples using quantitative real-time PCR (qRT-PCR) (n = 10) and capillary western blotting (n = 36). Targeted metabolomics of amino acids in CC extracts was performed by ultrahigh-performance liquid MS (UHPLC-MS/MS). MAIN RESULTS AND THE ROLE OF CHANCE: The number of oocytes (2.4 ± 2.2 versus 12.1 ± 5.3) and metaphase II oocytes (2.1 ± 2.0 versus 9.9 ± 4.9) retrieved was significantly decreased in the DOR versus the NOR group, respectively (P < 0.0001). The rates of fertilization (80.7% versus 78.8%), viable embryos (73.7% versus 72.5%), and high-quality embryos (42.8% versus 49.0%) did not differ between the DOR and NOR groups, respectively (P > 0.05). A total of 95 DEGs were found by transcriptome sequencing. GO and KEGG analyses demonstrated that the DEGs were linked to amino acid metabolism and suggested significantly higher activity of the de novo SSP in the CCs of young women with DOR. Further qRT-PCR and capillary western blotting revealed that key enzymes (PHGDH, PSAT1, PSPH, and SHMT2) involved in de novo serine synthesis were upregulated, and UHPLC-MS/MS analysis showed increases in serine and glycine (a downstream product of serine) levels in the CCs of young patients with DOR. Our data clearly demonstrate that the de novo SSP, which diverts 3-phosphoglycerate from glycolysis to serine synthesis, was upregulated in young DOR CCs. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Regarding the reproductive capacity of young patients DOR, the pregnancy outcomes were not analysed. The sample size was limited, and only women undergoing ICSI were examined since this was a prerequisite for the acquisition of CCs, which may cause selection bias. The exact mechanisms by which the SSP in CCs regulates ovarian reserve still require further study. WIDER IMPLICATIONS OF THE FINDINGS: Our research presents new evidence that alterations of the SSP in CCs of young infertile women are associated with DOR. We believe this is a significant contribution to the field, which should be key for understanding the cause and mechanisms of ovarian hypofunction in young women. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from the Ministry of Science and Technology of China (2018YFC1005001) and National Natural Science Foundation of China (31601197). There were no competing interests. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Infertilidade Feminina , Doenças Ovarianas , Reserva Ovariana , Gravidez , Humanos , Feminino , Infertilidade Feminina/metabolismo , Células do Cúmulo/metabolismo , Estudos Retrospectivos , Reserva Ovariana/fisiologia , Serina/metabolismo , Espectrometria de Massas em Tandem , Oócitos/metabolismo , Doenças Ovarianas/metabolismoRESUMO
BACKGROUND: Actin-like 7 A (ACTL7A) is essential for acrosome formation, fertilization and early embryo development. ACTL7A variants cause acrosome detachment responsible for male infertility and early embryonic arrest. In this study, we aim to explore the additional functions of ACTL7A beyond the process of acrosome biogenesis and investigate the possible underlying mechanisms. METHODS: Nuclear morphology analysis was used to observe the sperm head shape of ACTL7A-mutated patients. Actl7a knock-out (KO) mouse model was generated. Immunofluorescence and transmission electron microscopy (TEM) were performed to analyze the structure of spermatids during spermiogenesis. Tandem mass tags labeling quantitative proteomics strategy was employed to explore the underlying molecular mechanisms. The expression levels of key proteins in the pathway were analyzed by western blotting. Intracytoplasmic sperm injection (ICSI)-artificial oocyte activation (AOA) technology was utilized to overcome fertilization failure in male mice with a complete knockout of Actl7a. RESULTS: The new phenotype of small head sperm associated with loss of ACTL7A in patients was discovered, and further confirmed in Actl7a-KO mice. Immunofluorescence and TEM analyses revealed that the deletion of ACTL7A damaged the formation of acrosome-acroplaxome-manchette complex, leading to abnormalities in the shaping of sperm heads. Moreover, a proteomic analysis of testes from WT and Actl7a-KO mice revealed that differentially expressed genes were notably enriched in PI3K/AKT/mTOR signaling pathway which is strongly associated with autophagy. Inhibition of autophagy via PI3K/AKT/mTOR signaling pathway activation leading to PDLIM1 accumulation might elucidate the hindered development of manchette in Actl7a-KO mice. Remarkably, AOA successfully overcame fertilization failure and allowed for the successful production of healthy offspring from the Actl7a complete knockout male mice. CONCLUSIONS: Loss of ACTL7A causes small head sperm as a result of defective acrosome-acroplaxome-manchette complex via autophagy inhibition. ICSI-AOA is an effective technique to rescue male infertility resulting from ACTL7A deletion. These findings provide essential evidence for the diagnosis and treatment of patients suffering from infertility.
Assuntos
Acrossomo , Actinas , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Infertilidade Masculina/genética , Fosfatidilinositol 3-Quinases , Proteômica , Proteínas Proto-Oncogênicas c-akt/genética , Sêmen , Actinas/genéticaRESUMO
Since the switchable spontaneous polarization of ferroelectric materials endows it with many useful properties such as a large pyroelectric coefficient, switchable spontaneous polarization, and semiconductor, it has a wide range of application prospects, and the research of high-performance molecular ferroelectric materials has become a hot spot. We obtained a 0D organic-inorganic hybrid ferroelectric [(CH3)3NCH2CH2CH3]2FeCl4 (1) with well-defined ferroelectric domains and excellent domain inversion and exhibited a relatively large spontaneous polarization (Ps = 9 µC/m-2) and a Curie temperature (Tc) of 394 K. Furthermore, compound 1 belongs to the non-centrosymmetrical space group Cmc21 and has a strong second-harmonic generation signal. Interestingly, we also performed magnetic tests on 1, which confirmed that it is a magnetic material. This work provides clues for exploring the application of high-performance molecular ferroelectric materials in future multifunctional smart devices.
RESUMO
BACKGROUND: To explore the independent association between lumbar endplate damage and bone mineral density (BMD) in patients with degenerative disc disease (DDD). METHODS: This retrospective investigation was based out of a prospectively collected database from the Affiliated Kunshan Hospital of Jiangsu University. Data from 192 DDD patients, collected between December 2018 and January 2022, were chosen for the final analysis. The average total endplate score (TEPS) of lumbar(L) 1-L4 was assessed by magnetic resonance imaging (MRI), and represents the extent of endplate damage. Osteoporosis severity was assessed via the L1-L4 BMD evidenced by dual-energy x-ray absorptiometry (DXA). Other analyzed information included gender, age, body mass index (BMI), and osteophyte score (OSTS). Uni- and multivariate linear regression analyses were employed to evaluate the association between average TEPS and BMD of L1-L4. Moreover, the generalized additive model (GAM) was employed for non-linear association analysis. RESULTS: Upon gender, age, BMI, and OSTS adjustments, a strong independent inverse relationship was observed between average TEPS and BMD (ß, -0.021; 95% CI, -0.035 to -0.007, P-value = 0.00449). In addition, the gender stratification analysis revealed a linear relationship in males, and a non-linear relationship in females. Specifically, there was a significantly stronger negative relationship between average TEPS and BMD in females, when the average TEPS was < 3.75 (ß, -0.063; 95% CI, -0.114 to -0.013; P-value = 0.0157). However, at an average TEPS > 3.75, the relationship did not reach significance (ß, 0.007; 95% CI, -0.012 to 0.027; P-value = 0.4592). CONCLUSIONS: This study demonstrated the independent negative association between average TEPS and BMD values of L1-L4. Upon gender stratification, a linear relationship was observed in males, and a non-linear association in females. The findings reveal that patients with osteoporosis or endplate damage require more detailed examinations and treatment regimen.
Assuntos
Degeneração do Disco Intervertebral , Osteófito , Osteoporose , Feminino , Masculino , Humanos , Densidade Óssea , Degeneração do Disco Intervertebral/diagnóstico por imagem , Estudos Retrospectivos , Absorciometria de Fóton , Osteoporose/diagnóstico por imagemRESUMO
Circular RNAs (circRNAs) play important roles in many lung diseases. This study aimed to investigate the role of circHECTD1 in acute lung injury (ALI). The mouse and cell models of ALI were induced by lipopolysaccharide (LPS). The apoptosis of alveolar epithelial cells (AECs) was detected by flow cytometry. The relationships between circHECTD1, miRNAs, and target genes were assessed by RNA pull-down, luciferase reporter gene, and RNA-FISH assays. circHECTD1 was downregulated in LPS-induced human and mouse AECs (HBE and MLE-12). The knockdown of circHECTD1 increased the apoptotic rates and the expressions of miR-136 and miR-320a, while its overexpression caused opposite effects in LPS-induced HBE and MLE-12 cells. Mechanistically, circHECTD1 bound to miR-320a and miR-136. miR-320a targeted PIK3CA and mediated the effect of circHECTD1 on PIK3CA expression. miR-136 targeted Sirt1 and mediated the effect of circHECTD1 on Sirt1 expression. Silencing PIK3CA and/or Sirt1 reversed the effect of circHECTD1 overexpression on the apoptosis of LPS-induced HBE and MLE-12 cells. In vivo, overexpression of circHECTD1 alleviated the LPS-induced ALI of mice. Our findings suggested that circHECTD1 inhibits the apoptosis of AECs through miR-320a/PIK3CA and miR-136/Sirt1 pathways in LPS-induced ALI.
Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Células Epiteliais Alveolares , Animais , Apoptose , Classe I de Fosfatidilinositol 3-Quinases , Células Epiteliais , Humanos , Lipopolissacarídeos , Camundongos , Sirtuína 1RESUMO
BACKGROUND: Programmed Cell Death 2 Like (PDCD2L) correlates with cell proliferation, apoptosis and mouse embryonic development. However, the role of PDCD2L in human cancers is unclear. METHODS: Multiple bioinformatic methods, in vitro function experiments and validation were performed to clarify the oncogenic role of PDCD2L in human cancers. RESULTS: Our study found that PDCD2L was aberrantly expressed in multiple types of human cancers, and associated with clinical stage and molecular subtype. Furthermore, overexpression of PDCD2L predicted poor overall survival in adrenocortical carcinoma(ACC), kidney chromophobe(KICH), acute myeloid leukemia(LAML), brain lower grade glioma(LGG),liver hepatocellular carcinoma(LIHC), mesothelioma(MESO), uveal melanoma(UVM) and poor diseases free survival in ACC, bladder urothelial carcinoma(BLCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), kidney renal clear cell carcinoma(KIRC), kidney renal papillary cell carcinoma(KIRP), LGG, LIHC, and UVM. PDCD2L expression was negatively associated with cancer associated fibroblast in breast invasive carcinoma (BRCA), lung squamous cell carcinoma (LUSC), sarcoma (SARC), stomach adenocarcinoma (STAD) and testicular germ cell tumors (TGCT). Mechanically, we found that PDCD2L expression was associated with apoptosis, invasion and cell cycle by investigating single cell sequencing data. For further validation, PDCD2Lwas highly expressed in colorectal cancer (CRC) cell lines and tissue samples compared with the normal colon cell line and non-tumor adjacent colorectal mucosa tissues. PDCD2L knockdown induced the apoptosis and proliferation of CRC cells. CONCLUSIONS: Our study shows that the oncogenic role of PDCD2L in various cancers and PDCD2L could be served as a biomarker of CRC.
RESUMO
Previous studies have reported inconsistent associations between perfluoroalkyl and polyfluoroalkyl substances (PFAS) and gestational hypertension (GH) and blood pressure (BP) during pregnancy. Herein, we aimed to evaluate individual and overall effects of PFAS on GH and longitudinal BP measures during pregnancy. We included 826 pregnant women from the Jiashan Birth Cohort established between 2016 and 2018. Concentrations of thirteen PFAS were quantified using plasma samples collected within 16 weeks of gestation. Longitudinal BP measures were obtained from medical records, and more than nine measurements were available for 85.60% of participants. GH was defined as new-onset hypertension occurring after 20 weeks of gestation. Logistic regression models were used to examine the effect of PFAS on GH, while generalized estimating equation models evaluated the average effect of PFAS on BP in each trimester. The potential effect modification by fetal sex was also examined. Bayesian kernel machine regression (BKMR) and quantile g-computation (QgC) were implemented to explore the overall effect of the PFAS mixture. PFOA, PFOS, and PFHxS presented the highest median concentrations of 11.99, 8.81 and 5.43 ng/mL, respectively. Overall, 5.57% of subjects developed GH. PFOS, PFDA, PFUdA, and PFDoA were significantly associated with lower GH odds, and odds ratios ranged between 0.62 and 0.68. We noted associations between PFAS and lower systolic BP and diastolic BP in the third trimester, with PFDA and PFUdA exhibiting the effect on systolic BP only in pregnant women carrying a female fetus. These associations were further confirmed by BKMR and QgC, showing an inverse overall effect of the PFAS mixture. Higher concentrations of PFAS during early pregnancy were associated with lower GH risk and longitudinal BP measures in the third trimester in a population with relatively high exposure levels. Fetal sex might modify the effects of PFDA and PFUdA on systolic BP in the third trimester.
Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Hipertensão Induzida pela Gravidez , Teorema de Bayes , Pressão Sanguínea , Estudos de Coortes , Poluentes Ambientais/toxicidade , Feminino , Fluorocarbonos/toxicidade , Humanos , Hipertensão Induzida pela Gravidez/induzido quimicamente , Hipertensão Induzida pela Gravidez/epidemiologia , GravidezRESUMO
Previously, we have shown that human sperm Prohibitin (PHB) expression is significantly negatively correlated with mitochondrial ROS levels but positively correlated with mitochondrial membrane potential and motility. However, the possible role of PHB in mammalian spermatogenesis has not been investigated. Here we document the presence of PHB in spermatocytes and its functional roles in meiosis by generating the first male germ cell-specific Phb-cKO mouse. Loss of PHB in spermatocytes resulted in complete male infertility, associated with not only meiotic pachytene arrest with accompanying apoptosis, but also apoptosis resulting from mitochondrial morphology and function impairment. Our mechanistic studies show that PHB in spermatocytes regulates the expression of STAG3, a key component of the meiotic cohesin complex, via a non-canonical JAK/STAT pathway, and consequently promotes meiotic DSB repair and homologous recombination. Furthermore, the PHB/JAK2 axis was found as a novel mechanism in the maintenance of stabilization of meiotic STAG3 cohesin complex and the modulation of heterochromatin formation in spermatocytes during meiosis. The observed JAK2-mediated epigenetic changes in histone modifications, reflected in a reduction of histone 3 tyrosine 41 phosphorylation (H3Y41ph) and a retention of H3K9me3 at the Stag3 locus, could be responsible for Stag3 dysregulation in spermatocytes with the loss of PHB.