Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 18(19): 3748-3755, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506704

RESUMO

Self-wrinkling hydrogels enable various engineering and biomedical applications. The major challenge is to couple the self-wrinkling technologies and enhancement strategies, so as to get rid of the poor mechanical properties of existing self-wrinkling gels. Herein we present a facile diffusion-complexation strategy for constructing strong and ultratough self-wrinkling polyelectrolyte hydrogels with programmable wrinkled structures and customizable 3D configurations. Driven by the diffusion of low-molecular-weight chitosan polycations into the polyanion hydrogels, the high-modulus polyelectrolyte complexation shells can form directly on the hydrogel surface. Meanwhile, the polyanion hydrogels deswell/shrink due to the low osmotic pressure, which applies an isotropous surface compressive stress for inducing the formation of polygonal wrinkled structures. When the diffusion-complexation reaction occurs on a pre-stretched hydrogel sheet, the long-range ordered wrinkled structures can form during the springback/recovery of the hydrogel matrix. Moreover, through controlling the regions of diffusion-complexation reaction on the pre-stretched hydrogels, they can be spontaneously transformed into various 3D configurations with ordered wrinkled structures. Notably, because of the introduction of plenty of electrostatic binding (i.e., sacrificial bonds), the as-prepared self-wrinkling gels possess outstanding mechanical properties, far superior to the reported ones. This diffusion-complexation strategy paves the way for the on-demand design of high-performance self-wrinkling hydrogels.


Assuntos
Quitosana , Envelhecimento da Pele , Hidrogéis/química , Polieletrólitos
2.
ACS Appl Mater Interfaces ; 16(19): 25462-25472, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700267

RESUMO

The construction of surface microstructures (e.g., micropyramids and wrinkles) has been proven as the most effective means to boost the sensitivity of ionic skins (I-skins). However, the single-scale micronano patterns constructed by the common fabrication strategy generally lead to a limited pressure-response range. Here, a convenient repeated stretching/coordinating/releasing strategy is developed to controllably construct multiple graded wrinkles on the polyelectrolyte hydrogel-based I-skins for increasing their sensitivity over a broad pressure range. We find that the small wrinkles allow for high sensitivity yet small pressure detection range, while the large wrinkles can reduce structural stiffening to generate large pressure-response range but incur limited sensitivity. The multiple graded wrinkles can combine the merits of both the small and large wrinkles to simultaneously improve the sensitivity and broaden the pressure-response range. In particular, the sensing performance of multiple-wrinkle-based I-skins substantially outperforms the superposition of the sensing performance of different single-wrinkle-based I-skins. As a proof of concept, the triple-wrinkle-based I-skins can provide an extremely high sensitivity of 17,309 kPa-1 and an ultrawide pressure detection range of 0.38 Pa to 372 kPa. The approach and insight contribute to the future development of I-skins with a broader pressure-response range and higher sensitivity.

3.
Front Bioeng Biotechnol ; 10: 876157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837544

RESUMO

Percutaneous endoscopic lumbar discectomy has been widely used in clinical practice for lumbar spine diseases. But the postoperative disc re-herniation and inflammation are the main reason for pain recurrence after surgery. The postoperative local defect of the intervertebral disc will lead to the instability of the spine, further aggravating the process of intervertebral disc degeneration. In this work, we successfully synthesized the thermosensitive injectable celecoxib-loaded chitosan hydrogel and investigated its material properties, repair effect, biocompatibility, and histocompatibility in in vitro and in vivo study. In vitro and in vivo, the hydrogel has low toxicity, biodegradability, and good biocompatibility. In an animal experiment, this composite hydrogel can effectively fill local tissue defects to maintain the stability of the spine and delay the process of intervertebral disc degeneration after surgery. These results indicated that this composite hydrogel will be a promising way to treat postoperative intervertebral disc disease in future clinical applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa