Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Plant J ; 113(4): 716-733, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36575581

RESUMO

Somatic embryogenesis (SE) is widely used for studying the mechanisms of embryo development. However, little is known about the underlying mechanisms, especially in woody plants. Previous studies have established an SE system for Chinese fir (Cunninghamia lanceolata), but this system is genotype-dependent, which limits its application in practice. Here, we found that phytosulfokine (PSK), a plant peptide hormone, can not only increase SE efficiency, but also establish SE in recalcitrant genotypes of C. lanceolata. Proembryogenic mass (PEM) browning and determination of hydrogen peroxide (H2 O2 ) content by 2',7'-dichlorofluorescein staining indicated that a reactive oxygen species (ROS) burst occurred rapidly after PEMs were transferred to SE induction medium. Transcriptome analysis and quantitative reverse transcriptase-PCR validation showed that PSK treatment helped to maintain ROS homeostasis by decreasing the activity of peroxidases in early SE induction. This PSK-regulated redox microenvironment might be helpful to induce expression of SE-related genes like WOX2 in early SE induction. Further analyses suggested that PSK promotes SE induction in C. lanceolata partially through decreasing H2 O2 levels, which is necessary but not sufficient for SE induction in recalcitrant genotypes of C. lanceolata. Furthermore, heterologous overexpression of ClPSK in Arabidopsis led to enhanced SE induction and resistance to H2 O2 stress. Taken together, our study reveals a biological function for the plant peptide hormone PSK, extends our knowledge about SE in woody trees, and provides a valuable tool for establishing an efficient and genotype-independent SE system in C. lanceolata and other coniferous trees.


Assuntos
Cunninghamia , Hormônios Peptídicos , Cunninghamia/genética , Reguladores de Crescimento de Plantas , Hormônios Peptídicos/genética , Espécies Reativas de Oxigênio , Perfilação da Expressão Gênica
2.
BMC Plant Biol ; 24(1): 94, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326748

RESUMO

BACKGROUND: Auxin response factors (ARFs) are critical transcription factors that mediate the auxin signaling pathway and are essential for regulating plant growth. However, there is a lack of understanding regarding the ARF gene family in Liriodendron chinense, a vital species in landscaping and economics. Thus, further research is needed to explore the roles of ARFs in L. chinense and their potential applications in plant development. RESULT: In this study, we have identified 20 LcARF genes that belong to three subfamilies in the genome of L. chinense. The analysis of their conserved domains, gene structure, and phylogeny suggests that LcARFs may be evolutionarily conserved and functionally similar to other plant ARFs. The expression of LcARFs varies in different tissues. Additionally, they are also involved in different developmental stages of somatic embryogenesis. Overexpression of LcARF1, LcARF2a, and LcARF5 led to increased activity within callus. Additionally, our promoter-GFP fusion study indicated that LcARF1 may play a role in embryogenesis. Overall, this study provides insights into the functions of LcARFs in plant development and embryogenesis, which could facilitate the improvement of somatic embryogenesis in L. chinense. CONCLUSION: The research findings presented in this study shed light on the regulatory roles of LcARFs in somatic embryogenesis in L. chinense and may aid in accelerating the breeding process of this tree species. By identifying the specific LcARFs involved in different stages of somatic embryogenesis, this study provides a basis for developing targeted breeding strategies aimed at optimizing somatic embryogenesis in L. chinense, which holds great potential for improving the growth and productivity of this economically important species.


Assuntos
Liriodendron , Liriodendron/genética , Melhoramento Vegetal , Fatores de Transcrição/genética , Ácidos Indolacéticos/metabolismo , Genômica , Regulação da Expressão Gênica de Plantas , Técnicas de Embriogênese Somática de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542523

RESUMO

The transcription factor is an essential factor for regulating the responses of plants to external stimuli. The WRKY protein is a superfamily of plant transcription factors involved in response to various stresses (e.g., cold, heat, salt, drought, ions, pathogens, and insects). During angiosperm evolution, the number and function of WRKY transcription factors constantly change. After suffering from long-term environmental battering, plants of different evolutionary statuses ultimately retained different numbers of WRKY family members. The WRKY family of proteins is generally divided into three large categories of angiosperms, owing to their conserved domain and three-dimensional structures. The WRKY transcription factors mediate plant adaptation to various environments via participating in various biological pathways, such as ROS (reactive oxygen species) and hormone signaling pathways, further regulating plant enzyme systems, stomatal closure, and leaf shrinkage physiological responses. This article analyzed the evolution of the WRKY family in angiosperms and its functions in responding to various external environments, especially the function and evolution in Magnoliaceae plants. It helps to gain a deeper understanding of the evolution and functional diversity of the WRKY family and provides theoretical and experimental references for studying the molecular mechanisms of environmental stress.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Família Multigênica
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473982

RESUMO

Heat shock factors (Hsfs) play a crucial role in plant defense processes. However, the distribution and functional characteristics of Hsf genes in the relict plant Liriodendron chinense are still unclear. In this study, a total of 19 LcHsfs were identified and divided into three separate subgroups, comprising 10 LcHsfA, 7 LcHsfB, and 2 LcHsfC genes, respectively, based on their phylogenetic tree and the presence/absence of conserved protein domains. Whole-genome duplication and segmental duplication led to an expansion of the LhHsf gene family. The promoters of LcHsf genes are enriched for different types of cis-acting elements, including hormone responsive and abiotic-stress-responsive elements. The expression of LcHsfA3, LcHsfA4b, LcHsfA5, LcHsfB1b, and LcHsfB2b increased significantly as a result of both cold and drought treatments. LcHsfA2a, LcHsfA2b, and LcHsfA7 act as important genes whose expression levels correlate strongly with the expression of the LcHsp70, LcHsp110, and LcAPX genes under heat stress. In addition, we found that transiently transformed 35S:LcHsfA2a seedlings showed significantly lower levels of hydrogen peroxide (H2O2) after heat stress and showed a stronger thermotolerance. This study sheds light on the possible functions of LcHsf genes under abiotic stress and identifies potentially useful genes to target for molecular breeding, in order to develop more stress-resistant varieties.


Assuntos
Liriodendron , Liriodendron/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
5.
BMC Plant Biol ; 23(1): 415, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684590

RESUMO

As one of the largest plant specific transcription factor families, NAC family members play an important role in plant growth, development and stress resistance. To investigate the function of NAC transcription factors during abiotic stress, as well as during somatic embryogenesis, we identified and characterized the NAC gene family in Liriodendron chinense. We found that most LcNAC members contain more than three exons, with a relatively conserved gene and motif structure, especially at the N-terminus. Interspecies collinearity analysis revealed a closer relationship between the L. chinense NACs and the P. trichocarpa NACs. We analyzed the expression of LcNAC in different tissues and under three abiotic stresses. We found that 12 genes were highly expressed during the ES3 and ES4 stages of somatic embryos, suggesting that they are involved in the development of somatic embryos. 6 LcNAC genes are highly expressed in flower organs. The expression pattern analysis of LcNACs based on transcriptome data and RT-qPCR obtained from L. chinense leaves indicated differential expression responses to drought, cold, and heat stress. Genes in the NAM subfamily expressed differently during abiotic stress, and LcNAC6/18/41/65 might be the key genes in response to abiotic stress. LcNAC6/18/41/65 were cloned and transiently transformed into Liriodendron protoplasts, where LcNAC18/65 was localized in cytoplasm and nucleus, and LcNAC6/41 was localized only in nucleus. Overall, our findings suggest a role of the NAC gene family during environmental stresses in L. chinense. This research provides a basis for further study of NAC genes in Liriodendron chinense.


Assuntos
Liriodendron , Acetilcisteína , Núcleo Celular , Citoplasma
6.
BMC Plant Biol ; 23(1): 480, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814230

RESUMO

BACKGROUND: Suspension culture is widely used in the establishment of efficient plant regeneration systems, as well as in the mass production of plant secondary metabolites. However, the establishment of a suspension culture system of Cunninghamia lanceolata is genotype-dependent given that proembryogenic masses (PEMs) are prone to browning during this process in recalcitrant genotypes. Previously, we reported that the plant peptide hormone phytosulfokine (PSK) can tremendously decrease the hydrogen peroxide (H2O2) level and help to initiate somatic embryogenesis (SE) in recalcitrant C. lanceolata genotypes. However, to date, no studies have revealed whether or how PSK may contribute to the establishment of a suspension culture system in these recalcitrant genotypes. RESULTS: Here, we demonstrated that exogenous application of PSK effectively inhibited PEM browning during suspension culture in a recalcitrant genotype of C. lanceolata. Comparative time-series transcriptome profiling showed that redox homeostasis underwent drastic fluctuations when PEMs were cultured in liquid medium, while additional PSK treatment helped to maintain a relatively stable redox homeostasis. Interestingly, PSK seemed to have a dual effect on peroxidases (PRXs), with PSK simultaneously transcriptionally repressing ROS-producing PRXs and activating ROS-scavenging PRXs. Furthermore, determination of H2O2 and MDA content, as well as cell viability, showed that exogenous PSK treatment inhibited PEM browning and safeguarded PEM suspension culture by decreasing the H2O2 level and increasing PEM activity. CONCLUSIONS: Collectively, these findings provide a valuable tool for the future establishment of large-scale C. lanceolata PEM suspension culture without genotype limitations.


Assuntos
Cunninghamia , Hormônios Peptídicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cunninghamia/metabolismo , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio
7.
New Phytol ; 238(3): 1059-1072, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751948

RESUMO

Many plant species can give rise to embryos from somatic cells after a simple hormone treatment, illustrating the remarkable developmental plasticity of differentiated plant cells. However, many species are recalcitrant to somatic embryo formation for unknown reasons, which poses a significant challenge to agriculture, where somatic embryogenesis is an important tool to propagate desired genotypes. The micro-RNA394 (miR394) promotes shoot meristem maintenance in Arabidopsis thaliana, but the underlying mechanisms have remained elusive. We analyzed whether miR394 affects indirect somatic embryogenesis and determined the transcriptome of embryogenic callus upon miR394-enhanced somatic embryogenesis. We show that ectopic miR394 expression enhances somatic embryogenesis in the recalcitrant Ler accession when co-expressed with the transcription factor WUSCHEL (WUS) and that miR394 acts in this process through silencing the target LEAF CURLING RESPONSIVENESS (LCR). Furthermore, we show that higher endogenous miR394 levels are required for the elevated embryogenic potential of the Columbia accession compared with Ler, providing a mechanistic explanation for this natural variation. Our transcriptional analysis provides a framework for miR394 function in regulating pluripotency by expanding WUS-mediated direct transcriptional repression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Plantas/metabolismo
8.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674428

RESUMO

Roots are essential for plant growth, and studies on root-related genes, exemplified by WUSCHEL-RELATED HOMEOBOX5 (WOX5), have mainly concentrated on model organisms with less emphasis on the function of these genes in woody plants. Here, we report that overexpression of the WOX5 gene from Liriodendron hybrid (LhWOX5) in Arabidopsis leads to significant morphological changes in both the aerial and subterranean organs. In the Arabidopsis aerial parts, overexpression of LhWOX5 results in the production of ectopic floral meristems and leaves, possibly via the ectopic activation of CLV3 and LFY. In addition, in the Arabidopsis root, overexpression of LhWOX5 alters root apical meristem morphology, leading to a curled and shortened primary root. Importantly, these abnormal phenotypes in the aerial and subterranean organs caused by constitutive ectopic expression of LhWOX5 mimic the observed phenotypes when overexpressing AtWUS and AtWOX5 in Arabidopsis, respectively. Taken together, we propose that the LhWOX5 gene, originating from the Magnoliaceae plant Liriodendron, is a functional homolog of the AtWUS gene from Arabidopsis, while showing the highest degree of sequence similarity with its ortholog, AtWOX5. Our study provides insight into the potential role of LhWOX5 in the development of both the shoot and root.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/genética , Folhas de Planta/metabolismo , Plantas/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
9.
BMC Plant Biol ; 22(1): 25, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012508

RESUMO

BACKGROUND: Liriodendron chinense (Lchi) is a tree species within the Magnoliaceae family and is considered a basal angiosperm. The too low or high temperature or soil drought will restrict its growth as the adverse environmental conditions, thus improving L. chinense abiotic tolerance was the key issues to study. WRKYs are a major family of plant transcription factors known to often be involved in biotic and abiotic stress responses. So far, it is still largely unknown if and how the LchiWRKY gene family is tied to regulating L. chinense stress responses. Therefore, studying the involvement of the WRKY gene family in abiotic stress regulation in L. chinense could be very informative in showing how this tree deals with such stressful conditions. RESULTS: In this research, we performed a genome-wide analysis of the Liriodendron chinense (Lchi) WRKY gene family, studying their classification relationships, gene structure, chromosomal locations, gene duplication, cis-element, and response to abiotic stress. The 44 members of the LchiWRKY gene family contain a significant amount of sequence diversity, with their lengths ranging from 525 bp to 40,981 bp. Using classification analysis, we divided the 44 LchiWRKY genes into three phylogenetic groups (I, II, II), with group II then being further divided into five subgroups (IIa, IIb, IIc, IId, IIe). Comparative phylogenetic analysis including the WRKY families from 17 plant species suggested that LchiWRKYs are closely related to the Magnolia Cinnamomum kanehirae WRKY family, and has fewer family members than higher plants. We found the LchiWRKYs to be evenly distributed across 15 chromosomes, with their duplication events suggesting that tandem duplication may have played a major role in LchiWRKY gene expansion model. A Ka/Ks analysis indicated that they mainly underwent purifying selection and distributed in the group IId. Motif analysis showed that LchiWRKYs contained 20 motifs, and different phylogenetic groups contained conserved motif. Gene ontology (GO) analysis showed that LchiWRKYs were mainly enriched in two categories, i.e., biological process and molecular function. Two group IIc members (LchiWRKY10 and LchiWRKY37) contain unique WRKY element sequence variants (WRKYGKK and WRKYGKS). Gene structure analysis showed that most LchiWRKYs possess 3 exons and two different types of introns: the R- and V-type which are both contained within the WRKY domain (WD). Additional promoter cis-element analysis indicated that 12 cis-elements that play different functions in environmental adaptability occur across all LchiWRKY groups. Heat, cold, and drought stress mainly induced the expression of group II and I LchiWRKYs, some of which had undergone gene duplication during evolution, and more than half of which had three exons. LchiWRKY33 mainly responded to cold stress and LchiWRKY25 mainly responded to heat stress, and LchiWRKY18 mainly responded to drought stress, which was almost 4-fold highly expressed, while 5 LchiWRKYs (LchiWRKY5, LchiWRKY23, LchiWRKY14, LchiWRKY27, and LchiWRKY36) responded equally three stresses with more than 6-fold expression. Subcellular localization analysis showed that all LchiWRKYs were localized in the nucleus, and subcellular localization experiments of LchiWRKY18 and 36 also showed that these two transcription factors were expressed in the nucleus. CONCLUSIONS: This study shows that in Liriodendron chinense, several WRKY genes like LchiWRKY33, LchiWRKY25, and LchiWRKY18, respond to cold or heat or drought stress, suggesting that they may indeed play a role in regulating the tree's response to such conditions. This information will prove a pivotal role in directing further studies on the function of the LchiWRKY gene family in abiotic stress response and provides a theoretical basis for popularizing afforestation in different regions of China.


Assuntos
Aclimatação/genética , Resposta ao Choque Frio/genética , Desidratação/genética , Secas , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico/genética , Liriodendron/genética , China , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Filogenia
10.
Plant Cell ; 31(8): 1767-1787, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31123046

RESUMO

Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns that are perceived by the receptor-like kinases, PEPR1 and PEPR2, to enhance innate immunity and to inhibit root growth in Arabidopsis (Arabidopsis thaliana). Here, we show that Arabidopsis Pep1 inhibits root growth in a PEPR2-dependent manner, which is accompanied by swelling epidermal and cortex cells and root hair formation in the transition zone (TZ). These Pep1-induced changes were mimicked by exogenous auxin application and were suppressed in the auxin perception mutants transport inhibitor response1 (tir1) and tir1 afb1 afb2 Pep1-induced auxin accumulation in the TZ region preceded cell expansion in roots. Because local auxin distribution depends on PIN-type auxin transporters, we examined Pep1-PEPR-induced root growth inhibition in several pin mutants and found that pin2 was highly sensitive but pin3 was less sensitive to Pep1. The pin2 pin3 double mutant was as sensitive to Pep1 treatment as wild-type plants. Pep1 reduced the abundance of PIN2 in the plasma membrane through activating endocytosis while increasing PIN3 expression in the TZ, leading to changes in local auxin distribution and inhibiting root growth. These results suggest that Pep-PEPR signaling undergoes crosstalk with auxin accumulation to control cell expansion and differentiation in roots during immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transativadores/genética , Transativadores/metabolismo
11.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563155

RESUMO

In this study, 52 AAAP genes were identified in the L. chinense genome and divided into eight subgroups based on phylogenetic relationships, gene structure, and conserved motif. A total of 48 LcAAAP genes were located on the 14 chromosomes, and the remaining four genes were mapped in the contigs. Multispecies phylogenetic tree and codon usage bias analysis show that the LcAAAP gene family is closer to the AAAP of Amborella trichopoda, indicating that the LcAAAP gene family is relatively primitive in angiosperms. Gene duplication events revealed six pairs of segmental duplications and one pair of tandem duplications, in which many paralogous genes diverged in function before monocotyledonous and dicotyledonous plants differentiation and were strongly purification selected. Gene expression pattern analysis showed that the LcAAAP gene plays a certain role in the development of Liriodendron nectary and somatic embryogenesis. Low temperature, drought, and heat stresses may activate some WRKY/MYB transcription factors to positively regulate the expression of LcAAAP genes to achieve long-distance transport of amino acids in plants to resist the unfavorable external environment. In addition, the GAT and PorT subgroups could involve gamma-aminobutyric acid (GABA) transport under aluminum poisoning. These findings could lay a solid foundation for further study of the biological role of LcAAAP and improvement of the stress resistance of Liriodendron.


Assuntos
Liriodendron , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Liriodendron/genética , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
12.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232901

RESUMO

The calcineurin B-like-interacting protein kinase (CIPK) protein family plays a key role in the plant calcium ion-mediated signal transduction pathway, which regulates a plant's response to abiotic stress. Nitraria sibirica pall. (N. sibirica) is a halophyte with a strong tolerance for high salt environments, yet how it is able to deal with salt stress on a molecular level is still unknown. Due to their function as described in other plant species, CIPK genes are prime candidates for a role in salt stress signaling in N. sibirica. In this study, we identified and analyzed the phylogenetic makeup and gene expression of the N. sibirica CIPK gene family. A total of 14 CIPKs were identified from the N. sibirica genome and were clustered into seven groups based on their phylogeny. The promoters of NsCIPK genes contained multiple elements involved in hormonal and stress response. Synteny analysis identified a total of three pairs of synteny relationships between NsCIPK genes. Each gene showed its own specific expression pattern across different tissues, with the overall expression of CIPK6 being the lowest, and that of CIPK20 being the highest. Almost all CIPK genes tended to respond to salt, drought, and cold stress, but with different sensitivity levels. In this study, we have provided a general description of the NsCIPK gene family and its expression, which will be of great significance for further understanding of the NsCIPK gene family function.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Calcineurina/metabolismo , Cálcio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estresse Fisiológico/genética
13.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232423

RESUMO

Nitraria sibirica is a shrub that can survive in extreme drought environments. The auxin-response factors (ARFs) are a class of transcription factors that are widely involved in plant growth and development, as well as in the regulation of stress resistance. However, the genome-wide identification of the ARF gene family and its responses to environmental stresses, especially drought stress, in N. sibirica has not yet been reported. Here, we identified a total of 12 ARF genes in the genome of N. sibirica, which were distributed over 10 chromosomes and divided into three clades. Intragenome synteny analysis revealed one collinear gene pair in the ARF gene family, i.e., NsARF9a and NsARF9b. Cis-acting element analysis showed that multiple hormones and stress-responsive cis-acting elements were found in the promoters of NsARFs, suggesting that NsARFs may be involved in multiple biological processes. Quantitative real-time PCR (qRT-PCR) showed that many NsARFs had tissue-specific expression patterns, with the highest expression of NsARF16 in the seedlings of N. sibirica. In addition, most of the NsARFs that were upregulated under drought were independent of endogenous ABA biosynthesis, whereas the response of NsARF5 and NsARF7a to drought was disrupted by the ABA-biosynthesis inhibitor fluridone. These studies provide a basis for further research into how NsARFs in N. sibirica respond to hormonal signaling and environmental stresses.


Assuntos
Ácidos Indolacéticos , Magnoliopsida , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hormônios , Ácidos Indolacéticos/metabolismo , Magnoliopsida/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
BMC Plant Biol ; 21(1): 123, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648456

RESUMO

BACKGROUND: The CIPKs are a group of plant-specific Ser/Thr protein kinases acting in response to calcium signaling, which plays an important role in the physiological and developmental adaptation of plants to adverse environments. However, the functions of halophyte-derived CIPKs are still poorly understood, that limits a potential application of CIPKs from halophytes for improving the tolerance of glycophytes to abiotic stresses. RESULTS: In this study, we characterized the NtCIPK11 gene from the halophyte Nitraria tangutorum and subsequently analyzed its role in salt and drought stress tolerance, using Arabidopsis as a transgenic model system. NtCIPK11 expression was upregulated in N. tangutorum root, stem and blade tissues after salt or drought treatment. Overexpressing NtCIPK11 in Arabidopsis improved seed germination on medium containing different levels of NaCl. Moreover, the transgenic plants grew more vigorously under salt stress and developed longer roots under salt or drought conditions than the WT plants. Furthermore, NtCIPK11 overexpression altered the transcription of genes encoding key enzymes involved in proline metabolism in Arabidopsis exposed to salinity, however, which genes showed a relatively weak expression in the transgenic Arabidopsis undergoing mannitol treatment, a situation that mimics drought stress. Besides, the proline significantly accumulated in NtCIPK11-overexpressing plants compared with WT under NaCl treatment, but that was not observed in the transgenic plants under drought stress caused by mannitol application. CONCLUSIONS: We conclude that NtCIPK11 promotes plant growth and mitigates damage associated with salt stress by regulating the expression of genes controlling proline accumulation. These results extend our understanding on the function of halophyte-derived CIPK genes and suggest that NtCIPK11 can serve as a candidate gene for improving the salt and drought tolerance of glycophytes through genetic engineering.


Assuntos
Genes de Plantas , Magnoliopsida/genética , Proteínas Serina-Treonina Quinases/genética , Aclimatação/genética , Arabidopsis/fisiologia , Calcineurina/química , Biologia Computacional , Secas , Perfilação da Expressão Gênica , Técnicas de Transferência de Genes , Haplótipos , Magnoliopsida/enzimologia , Magnoliopsida/fisiologia , Plantas Geneticamente Modificadas , Prolina/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Tolerância ao Sal/genética
15.
BMC Plant Biol ; 21(1): 230, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022807

RESUMO

BACKGROUND: Nitraria tangutorum is an important desert shrub that shows resistance to drought, salt and wind erosion stresses. It is a central ecological species in its area. Here, we have studied how N. tangutorum has adapted to achieve a successful reproduction strategy. RESULTS: We found that N. tangutorum is mainly pollinated by insects of the Hymenoptera, Diptera and Coleoptera orders. Nitraria tangutorum has very small flowers, with the nectary composed of secretive epidermal cells from which nectar is secreted, located within the inner petals. In addition, analyzing the transcriptome of four successive flower developmental stages revealed that mainly differentially expressed genes associated with flower and nectary development, nectar biosynthesis and secretion, flavonoid biosynthesis, plant hormone signal transduction and plant-pathogen interaction show dynamic expression. From the nectar, we could identify seven important proteins, of which the L-ascorbate oxidase protein was first found in plant nectar. Based on the physiological functions of these proteins, we predict that floral nectar proteins of N. tangutorum play an important role in defending against microbial infestation and scavenging active oxygen. CONCLUSIONS: This study revealed that N. tangutorum is an insect-pollinated plant and its nectary is composed of secretive epidermal cells that specialized into secretive trichomes. We identified a large number of differentially expressed genes controlling flower and nectary development, nectar biosynthesis and secretion, flavonoid biosynthesis, plant hormone signal transduction and plant-pathogen interaction. We suggest that proteins present in N. tangutorum nectar may have both an antibacterial and oxygen scavenging effect. These results provide a scientific basis for exploring how the reproductive system of N. tangutorum and other arid-desert plants functions.


Assuntos
Magnoliopsida/fisiologia , Néctar de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Polinização , Proteoma/metabolismo , Transcriptoma , Animais , Besouros/fisiologia , Dípteros/fisiologia , Himenópteros/fisiologia , Magnoliopsida/genética
16.
Plant Cell ; 30(5): 1132-1146, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29716993

RESUMO

The plant elicitor peptides (Peps), a family of damage/danger-associated molecular patterns (DAMPs), are perceived by two receptors, PEPR1 and PEPR2, and contribute to plant defense against pathogen attack and abiotic stress. Here, we show that the Peps-PEPR signaling pathway functions in stomatal immunity by activating guard cell anion channels in Arabidopsis thaliana The mutant plants lacking both PEPR1 and PEPR2 (pepr1 pepr2) displayed enhanced bacterial growth after being sprayed with Pseudomonas syringae pv tomato (Pst) DC3000, but not after pathogen infiltration into leaves, implicating PEPR function in stomatal immunity. Indeed, synthetic Arabidopsis Peps (AtPeps) effectively induced stomatal closure in wild-type but not pepr1 pepr2 mutant leaves, suggesting that the AtPeps-PEPR signaling pathway triggers stomatal closure. Consistent with this finding, patch-clamp recording revealed AtPep1-induced activation of anion channels in the guard cells of wild-type but not pepr1 pepr2 mutant plants. We further identified two guard cell-expressed anion channels, SLOW ANION CHANNEL1 (SLAC1) and its homolog SLAH3, as functionally overlapping components responsible for AtPep1-induced stomatal closure. The slac1 slah3 double mutant, but not slac1 or slah3 single mutants, failed to respond to AtPep1 in stomatal closure assays. Interestingly, disruption of OPEN STOMATA1 (OST1), an essential gene for abscisic acid-triggered stomatal closure, did not affect the AtPep1-induced anion channel activity and stomatal response. Together, these results illustrate a DAMP-triggered signaling pathway that, unlike the flagellin22-FLAGELLIN-SENSITIVE2 pathway, triggers stomata immunity through an OST1-independent mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peptídeos/metabolismo , Estômatos de Plantas/metabolismo , Proteínas Quinases/metabolismo
17.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281216

RESUMO

GAox is a key enzyme for the transformation of gibberellins, and belongs to the 2-ketoglutarate dependent dioxygenase gene family (2ODD). However, a systematic analysis of GAox in the angiosperm L. chinense has not yet been reported. Here, we identified all LcGAox gene family members in L. chinense, which were classified into the three subgroups of GA20ox, C19GA2ox, and C20GA2ox. Comparison of the gene structure, conserve motifs, phylogenetic relationships, and syntenic relationships of gibberellin oxidase gene families in different species indicated that the gene functional differences may be due to the partial deletion of their domains during evolution. Furthermore, evidence for purifying selection was detected between orthologous GAox genes in rice, grape, Arabidopsis, and L. chinense. Analysis of the codon usage patterns showed that mutation pressure and natural selection might have induced codon usage bias in angiosperms; however, the LcGAox genes in mosses, lycophytes, and ambarella plants exhibited no obvious codon usage preference. These results suggested that the gibberellin oxidase genes were more primitive. The gene expression pattern was analyzed in different organs subjected to multiple abiotic stresses, including GA, abscisic acid (ABA), and chlormequat (CCC) treatment, by RNA-seq and qRT-PCR, and the stress- and phytohormone-responsive cis-elements were counted. The results showed that the synthesis and decomposition of GA were regulated by different LcGAox genes in the vegetative and reproductive organs of L. chinense, and only LcGA2ox1,4, and 7 responded to the NaCl, polyethylene glycol, 4 °C, GA, ABA, and CCC treatment in the roots, stems, and leaves of seedlings at different time periods, revealing the potential role of LcGAox in stress resistance.


Assuntos
Giberelinas/metabolismo , Liriodendron/genética , Oxirredutases/genética , Uso do Códon , Regulação da Expressão Gênica de Plantas , Liriodendron/enzimologia , Família Multigênica , Regiões Promotoras Genéticas , Estresse Fisiológico
18.
BMC Plant Biol ; 20(1): 508, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153428

RESUMO

BACKGROUND: Cunninghamia lanceolata (Chinese fir), a member of the conifer family Cupressaceae, is one of the most popular cultivated trees for wood production in China. Continuous research is being performed to improve C. lanceolata breeding values. Given the high rate of seed abortion (one of the reasons being the failure of ovule and pollen development) in C. lanceolata, the proper formation of female/male cones could theoretically increase the number of offspring in future generations. MIKC MADS-box genes are well-known for their roles in the flower/cone development and comprise the typical/atypical floral development model for both angiosperms and gymnosperms. RESULTS: We performed a transcriptomic analysis to find genes differentially expressed between female and male cones at a single, carefully determined developmental stage, focusing on the MIKC MADS-box genes. We finally obtained 47 unique MIKC MADS-box genes from C. lanceolata and divided these genes into separate branches. 27 out of the 47 MIKC MADS-box genes showed differential expression between female and male cones, and most of them were not expressed in leaves. Out of these 27 genes, most B-class genes (AP3/PI) were up-regulated in the male cone, while TM8 genes were up-regulated in the female cone. Then, with no obvious overall preference for AG (class C + D) genes in female/male cones, it seems likely that these genes are involved in the development of both cones. Finally, a small number of genes such as GGM7, SVP, AGL15, that were specifically expressed in female/male cones, making them candidate genes for sex-specific cone development. CONCLUSIONS: Our study identified a number of MIKC MADS-box genes showing differential expression between female and male cones in C. lanceolata, illustrating a potential link of these genes with C. lanceolata cone development. On the basis of this, we postulated a possible cone development model for C. lanceolata. The gene expression library showing differential expression between female and male cones shown here, can be used to discover unknown regulatory networks related to sex-specific cone development in the future.


Assuntos
Cunninghamia/genética , Genes de Plantas/fisiologia , Proteínas de Domínio MADS/fisiologia , Componentes Aéreos da Planta/crescimento & desenvolvimento , Transcriptoma/genética , Cunninghamia/crescimento & desenvolvimento , Cunninghamia/ultraestrutura , Perfilação da Expressão Gênica , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Microscopia Eletrônica de Varredura , Componentes Aéreos da Planta/metabolismo , Componentes Aéreos da Planta/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/fisiologia
19.
Plant Physiol ; 179(2): 640-655, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30552198

RESUMO

Vacuolar storage of phosphate (Pi) is essential for Pi homeostasis in plants. Recent studies have identified a family of vacuolar Pi transporters, VPTs (PHT5s), responsible for vacuolar sequestration of Pi. We report here that both VPT1 and VPT3 contribute to cytosol-to-vacuole Pi partitioning. Although VPT1 plays a predominant role, VPT3 is particularly important when VPT1 is absent. Our data suggested that the vpt1 vpt3 double mutant was more defective in Pi homeostasis than the vpt1 single mutant, as indicated by Pi accumulation capacity, vacuolar Pi influx, subcellular Pi allocation, and plant adaptability to changing Pi status. The remaining member of the VPT family, VPT2 (PHT5;2), did not appear to contribute to Pi homeostasis in such assays. Particularly interesting is the finding that the vpt1 vpt3 double mutant was impaired in reproductive development with shortened siliques and impaired seed set under sufficient Pi, and this phenotype was not found in the vpt1 vpt2 and vpt2 vpt3 double mutants. Measurements of Pi contents revealed Pi over-accumulation in the floral organs of vpt1 vpt3 as compared with the wild type. Further analysis identified excess Pi in the pistil as inhibitory to pollen tube growth, and thus seed yield, in the mutant plants. Reducing the Pi levels in culture medium or mutation of PHO1, a Pi transport protein responsible for root-shoot transport, restored the seed set of vpt1 vpt3 Thus, VPTs, through their function in vacuolar Pi sequestration, control the fine-tuning of systemic Pi allocation, which is particularly important for reproductive development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/efeitos dos fármacos , Flores/metabolismo , Homeostase , Mutação , Proteínas de Transporte de Fosfato/genética , Fosfatos/toxicidade , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Vacúolos/metabolismo
20.
PLoS Biol ; 15(12): e2004310, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29283991

RESUMO

Auxin controls a myriad of plant developmental processes and plant response to environmental conditions. Precise trafficking of auxin transporters is essential for auxin homeostasis in plants. Here, we report characterization of Arabidopsis CTL1, which controls seedling growth and apical hook development by regulating intracellular trafficking of PIN-type auxin transporters. The CTL1 gene encodes a choline transporter-like protein with an expression pattern highly correlated with auxin distribution and is enriched in shoot and root apical meristems, lateral root primordia, the vascular system, and the concave side of the apical hook. The choline transporter-like 1 (CTL1) protein is localized to the trans-Golgi network (TGN), prevacuolar compartment (PVC), and plasma membrane (PM). Disruption of CTL1 gene expression alters the trafficking of 2 auxin efflux transporters-Arabidopsis PM-located auxin efflux transporter PIN-formed 1 (PIN1) and Arabidopsis PM-located auxin efflux transporter PIN-formed 3 (PIN3)-to the PM, thereby affecting auxin distribution and plant growth and development. We further found that phospholipids, sphingolipids, and other membrane lipids were significantly altered in the ctl1 mutant, linking CTL1 function to lipid homeostasis. We propose that CTL1 regulates protein sorting from the TGN to the PM through its function in lipid homeostasis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Glicosídeo Hidrolases/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Transporte Proteico , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Homeostase , Metabolismo dos Lipídeos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa