Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Neurochem ; 162(2): 166-189, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621027

RESUMO

The nucleus accumbens (NAc) is the key area of the reward circuit, but its heterogeneity has been poorly studied. Using single-cell RNA sequencing, we revealed a subcluster of GABAergic neurons characterized by cell division cycle 20 (Cdc20) mRNA expression in the NAc of adult rats. We studied the coexpression of Cdc20 and Gad1 mRNA in the NAc neurons of adult rats and assessed Cdc20 protein expression in the NAc during rat development. Moreover, we microinjected AAV2/9-hSyn-Cdc20 with or without the dual-AAV system into the bilateral NAc for sparse labeling to observe changes in the synaptic morphology of mature neurons and assessed rat behaviors in open field and elevated plus maze tests. Furthermore, we performed the experiments with a Cdc20 inhibitor, Cdc20 over-expression AAV vector, and Cdc20 conditional knockout primary striatal neurons to understand the ubiquitination-dependent degradation of fragile X mental retardation protein (FMRP) in vitro and in vivo. We confirmed the mRNA expression of Cdc20 in the NAc GABAergic neurons of adult rats, and its protein level was decreased significantly 3 weeks post-birth. Up-regulated Cdc20 expression in the bilateral NAc decreased the dendritic spine density in mature neurons and induced anxiety-like behavior in rats. Cdc20-APC triggered FMRP degradation through K48-linked polyubiquitination in Neuro-2a cells and primary striatal neurons and down-regulated FMRP expression in the NAc of adult rats. These data revealed that up-regulation of Cdc20 in the bilateral NAc reduced dendritic spine density and led to anxiety-like behaviors, possibly by enhancing FMRP degradation via K48-linked polyubiquitination.


Assuntos
Proteínas Cdc20 , Espinhas Dendríticas , Proteína do X Frágil da Deficiência Intelectual , Animais , Proteínas Cdc20/genética , Ciclo Celular , Espinhas Dendríticas/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ubiquitinação , Regulação para Cima
2.
Int J Neurosci ; 132(8): 835-842, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33115307

RESUMO

BACKGROUND AND OBJECTIVE: The imbalanced hemostatic equilibrium caused by brain tissue or vessel damage underlies the pathophysiology of traumatic brain injury (TBI)-induced coagulopathy, and cranial computed tomography (CT) is the gold standard for evaluating brain injury. The present study aimed to explore the correlation between quantitative cranial CT parameters and coagulopathy after TBI. METHODS: We retrospectively collected the medical records of TBI patients with extracranial abbreviated injury scale (AIS) scores <3 who were admitted to our institution. The quantitative cranial CT parameters of patients with and without coagulopathy were compared, and univariate correlation analysis between CT parameters and coagulation subtest values and platelet counts was performed. The predictors for each subtest of coagulation function were probed by multivariate regression. RESULTS: TBI patients with coagulopathy had a larger intracerebral haematoma/contusion (ICH/C) volume (p < 0.001), a higher incidence of compressed basal cisterns (p = 0.015), a higher Graeb score (p < 0.001) and subarachnoid haematoma (Fisher's scaling score) (p = 0.019) than those without coagulopathy. IH/C volume was identified as an independent risk factor for predicting coagulopathy. ICH/C volume showed a significantly positive correlation with APTT (Pearson's correlation = 0.333, p < 0.001), while a significant negative correlation with PLT (Pearson's correlation = - 0.312, p < 0.001). CONCLUSION: ICH/C volume was a main quantitative cranial CT parameter for predicting coagulopathy, suggesting that parenchymal brain damage and vessel injury were closely associated with coagulopathy after TBI.


Assuntos
Transtornos da Coagulação Sanguínea , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Transtornos da Coagulação Sanguínea/complicações , Transtornos da Coagulação Sanguínea/etiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Hematoma , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
3.
Microb Ecol ; 82(1): 87-99, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33415384

RESUMO

This study aimed to investigate the fungal diversity and its temporal and spatial dynamics in the rhizosphere soil of healthy cotton by high-throughput sequencing. We studied species richness, composition, and distribution of cotton rhizosphere fungal community with respect to location (Alaer, Kuerle, Tumushuke, Hami, Shihezi, Wusu, and Jinghe) and plant growth period (seedling stage, bud stage, flowering stage, and boll-opening stage) using the methods of PCR-based high-throughput sequencing and real-time quantitative PCR. A total of 1,838,454 fungal nuclear ribosomal internal transcribed spacer region sequences (rRNA ITS) were obtained from all cotton plants sampled at different growth stages in the seven locations in Xinjiang. The most abundant fungal group in the cotton rhizosphere was the Ascomycota (78.72%), followed by the Zygomycota (9.56%) and Basidiomycota (2.77%). These sequences revealed an enormous number of operational taxonomic units (OTUs) in cotton (1802 unique OTUs), with 67-464 OTUs in a single cotton sample, at a 3% threshold and a sequencing depth of 30,000 sequences. We identified 33 classes and 389 genera from the resulting 1,800,714 sequences. Sordariomycetes was the most frequent class in all samples, followed by Leotiomycetes and Eurotiomycetes. There were some differences in OTUs among different growth stages, but the differences were not significant, with 382 OTUs (14.66%) being common to each of the stages. A marked difference in the diversity of fungi in the rhizosphere soil of cotton was evident among the different locations, with the highest number of OTUs being detected in Jinghe (1084 OTUs) and clusters of OTUs representative of northern and eastern Xinjiang being detected. There were significantly more tags of Mortierella in Jinghe and Wusu than in the other sampling sites. The dynamics of the rhizosphere fungal communities were influenced by sampling sites. To the best of our knowledge, the current study is the first application of PCR-based Illumina to characterize and compare the fungal biodiversity in multiple rhizosphere soil samples from cotton.


Assuntos
Micobioma , Rizosfera , Biodiversidade , Fungos/genética , Gossypium , Solo , Microbiologia do Solo
4.
Can J Microbiol ; 67(7): 506-517, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33180552

RESUMO

Endogenous bacteria are important for maintaining the health and other ecologically relevant functions of cotton plants. However, little is known about the community structures and diversity of endophytic bacteria in cotton plants. In our study, we used the Illumina amplicon sequencing technology to study the endophytic bacteria found in cotton root tissue in Xinjiang, China. A total of 60.84 × 106 effective sequences of the 16S rRNA gene in the V5-V6 variable region revealed a large number of operational taxonomic units (OTUs), namely 81-338 OTUs, at a cut-off level of 3% and a sequencing depth of 50 000 sequences. Among the 23 classes identified, Gammaproteobacteria was the dominant group, followed by Alphaproteobacteria, Actinobacteria, and Bacillus. The diversity of endogenous bacteria differed at different growth periods, with the most OTUs detected in seedlings (654), followed by the budding stage (381), flowering stage (350), and flocking stage (351). A total of 217 OTUs were common to all four stages. Pantoea tags were more common to the Shihezi region, whereas Erwinia labels were more common to the Hami region. These results suggest that the dynamics of endophytic bacterial communities are affected by plant growth stage. This highlights the relevance of microbial diversity studies in improving our understanding of endophyte communities.


Assuntos
Bactérias/isolamento & purificação , Endófitos/isolamento & purificação , Gossypium/microbiologia , Bactérias/classificação , Bactérias/genética , Biodiversidade , China , Endófitos/classificação , Endófitos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética
5.
Can J Microbiol ; 66(3): 228-242, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31944857

RESUMO

Rhizosphere bacteria are key determinants of plant health and productivity. In this study, we used PCR-based next-generation sequencing to reveal the diversity and community composition of bacteria in the cotton rhizosphere from samples collected in Xinjiang Province, China. We identified 125 bacterial classes within 49 phyla from these samples. Proteobacteria (33.07% of total sequences), Acidobacteria (19.88%), and Gemmatimonadetes (11.19%) dominated the bacterial community. Marked differences were evident in the α-diversity of rhizosphere bacteria during different cotton plant growth and development stages. The operational taxonomic unit (OTU) numbers were highest in seedling and bud stages and decreased at the flowering and fruit-boll-opening stages. Forty-three OTUs from the Proteobacteria were common to all four periods of cotton development. Proteobacteria were more abundant in the rhizospheres of cotton from southern Xinjiang than from northern Xinjiang, while the opposite trend was observed for Acidobacteria. Gemmatimonadetes frequency was broadly the same in both northern and southern Xinjiang. These results suggest that there is abundant diversity in the microbiota of cotton rhizosphere soil. Proteobacteria and Actinobacteria dominated this microbial niche and bacterial communities in the seedling, bud, flowering, and boll-opening stages appear to be more similar to one another than to communities at the other growth stages.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Gossypium/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , China , Gossypium/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Rizosfera , Solo/química
6.
Antonie Van Leeuwenhoek ; 107(2): 453-66, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25472706

RESUMO

We investigated the primary successions of soil enzyme activity and heterotrophic microbial communities at the forefields of the Tianshan Mountains No. 1 Glacier by investigating soil microbial processes (microbial biomass and nitrogen mineralization), enzyme activity and community-level physiological profiling. Soils deglaciated between 1959 and 2008 (0, 5, 17, 31 and 44 years) were collected. Soils >1,500 years in age were used as a reference (alpine meadow soils). Soil enzyme activity and carbon-source utilization ability significantly increased with successional time. Amino-acid utilization rates were relatively higher in early, unvegetated soils (0 and 5 years), but carbohydrate utilization was higher in later stages (from 31 years to the reference soil). Discriminant analysis, including data on microbial processes and soil enzyme activities, revealed that newly exposed soils (0-5 years) and older soils (17-44 years) were well-separated from each other and obviously different from the reference soil. Correlation analysis revealed that soil organic carbon, was the primary factor influencing soil enzyme activity and heterotrophic microbial community succession. Redundancy analysis suggested that soil pH and available P were also affect microbial activity to a considerable degree. Our results indicated that glacier foreland soils have continued to develop over 44 years and soils were significantly affected by the geographic location of the glacier and the local topography. Soil enzyme activities and heterotrophic microbial communities were also significantly influenced by these variables.


Assuntos
Enzimas/análise , Camada de Gelo/microbiologia , Microbiologia do Solo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , China , Fatores de Tempo
7.
World J Microbiol Biotechnol ; 31(7): 1031-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25862354

RESUMO

Plants harbor complex and variable microbial communities. Using molecular-based techniques targeting the 16S rRNA gene, we studied the developmental stages and geographical location diversity of endophytic archaea in two locations (Shihezi and Changji) and four periods (the seedling growth, rosette formation, tuber growth and sucrose accumulation sampling periods) in the north slope of Tianshan Mountain, China. Community structure of mixed sample from 60 sugar beet plants was examined using PCR-based 454 pyrosequencing and terminal restriction fragment length polymorphism (T-RFLP). In total, 5290 archaea 16S rRNA sequences were obtained from all sugar beet samples. The most abundant archaea groups in all sugar beet were Methanococci, the miscellaneous Crenarchaeotic Group and Thermoplasmata. There was a marked difference in diversity of endophytic archaea in sugar beet for different growth periods. The greatest number of Operational T-RFLP Units (OTUs) was detected during sucrose accumulation (298) and rosette formation (282). Endophytic archaea diversity was reduced during seedling growth (128 OTUs) and tuber growth (55 OTUs). Nine OTUs were common to all four periods of growth. There were more OTUs in Shihezi than in Changji. Clustering analysis and principal component analysis of T-RFLP data revealed distinct shifts in endophytic archaea community profiles that corresponded to plant growth stage rather than geographical location. The dynamics of endophytic archaea communities were influenced by plant growth stage. To our knowledge, this is the first report that archaea has been identified as endophytes associated with sugar beet by the culture-independent approach. The results suggest that the diversity of endophytic archaea is abundant in sugar beet.


Assuntos
Archaea/classificação , Beta vulgaris/crescimento & desenvolvimento , Endófitos/classificação , Polimorfismo de Fragmento de Restrição , Archaea/genética , Beta vulgaris/microbiologia , China , Análise por Conglomerados , DNA Ribossômico/análise , Endófitos/genética , Genes Arqueais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/análise , Análise de Sequência de DNA/métodos
8.
Appl Microbiol Biotechnol ; 98(14): 6375-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24752839

RESUMO

Plants harbors complex and variable microbial communities. Endophytic bacteria play an important function and potential role more effectively in developing sustainable systems of crop production. To examine how endophytic bacteria in sugar beet (Beta vulgaris L.) vary across both host growth period and location, PCR-based Illumina was applied to revealed the diversity and stability of endophytic bacteria in sugar beet on the north slope of Tianshan mountain, China. A total of 60.84 M effective sequences of 16S rRNA gene V3 region were obtained from sugar beet samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in sugar beet, that is, 19-121 OTUs in a beet sample, at 3 % cutoff level and sequencing depth of 30,000 sequences. We identified 13 classes from the resulting 449,585 sequences. Alphaproteobacteria were the dominant class in all sugar beets, followed by Acidobacteria, Gemmatimonadetes and Actinobacteria. A marked difference in the diversity of endophytic bacteria in sugar beet for different growth periods was evident. The greatest number of OTUs was detected during rossette formation (109 OTUs) and tuber growth (146 OTUs). Endophytic bacteria diversity was reduced during seedling growth (66 OTUs) and sucrose accumulation (95 OTUs). Forty-three OTUs were common to all four periods. There were more tags of Alphaproteobacteria and Gammaproteobacteria in Shihezi than in Changji. The dynamics of endophytic bacteria communities were influenced by plant genotype and plant growth stage. To the best of our knowledge, this study is the first application of PCR-based Illumina pyrosequencing to characterize and compare multiple sugar beet samples.


Assuntos
Bactérias/classificação , Bactérias/genética , Beta vulgaris/microbiologia , Biota , Endófitos/classificação , Endófitos/genética , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Análise Espaço-Temporal
9.
J Basic Microbiol ; 54(6): 509-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23828550

RESUMO

The prokaryotic diversity in two brackish lakes (Sayram Lake and Chaiwopu Lake) was investigated by constructing bacterial and archaeal clone libraries of 16S rRNA genes. Bacterial clones from Sayram Lake were classified into six phyla (Proteobacteria, Verrucomicrobia, Bacteroidetes, Planctomycetes, Acidobacteria, Actinobacteria). Of these, Proteobacteria and Verrucomicrobia were the most dominant, representing 50.4 and 16.8% of the clone library, respectively. Sequences related to Proteobacteria (58.1%), Cyanobacteria (17.2%), Bacteroidetes (15%), Verrucomicrobia (4.3%), Actinobacteria (3.2%) constituted over 97% of the bacterial clone library from Chaiwopu Lake. In addition, 58.8% (Sayram Lake) and 48% (Chaiwopu Lake) of bacterial clones showed high sequence identity to pure cultures. The composition of Archaea was obviously different between the two lakes. Only the Crenarchaeota phylum was found in the Sayram Lake, whereas Archaeal sequences from Chaiwopu Lake were classified into three phyla: Crenarchaeota (5.8%), Thaumarchaeota (81.2%), and Euryarchaeota (13%). Among the archaeal sequences, 94.2% were highly related to cultivable species of the genus Nitrosopumilus, Methanoculleus, and Methanobacterium. These results showed a high diversity of potential cultivable heterotrophic bacteria in Sayram Lake and Chaiwopu Lake. Chaiwopu Lake was a source of potentially novel, cultivable archaea.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Lagos/microbiologia , Archaea/genética , Bactérias/genética , China , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Front Microbiol ; 15: 1355369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711968

RESUMO

Introduction: Bacillus velezensis occurs extensively in the soil environment. It produces a range of antimicrobial compounds that play an important role in the field of biological control. However, during the actual application process it is often affected by factors such as the medium formulation and fermentation conditions, and therefore biocontrol measures often do not achieve their expected outcomes. Methods: In this study, the B. velezensis BHZ-29 strain was used as the research object. The carbon and nitrogen sources, and inorganic salts that affect the number of viable bacteria and antibacterial potency of B. velezensis BHZ-29, were screened by a single factor test. A Plackett-Burman design experiment was conducted to determine the significant factors affecting the number of viable bacteria and antibacterial potency, and a Box-Behnken design experiment was used to obtain the optimal growth of B. velezensis BHZ-29. The medium formula that produced the highest number of viable bacteria and most antibacterial substances was determined. The initial pH, temperature, amount of inoculant, liquid volume, shaking speed, and culture time were determined by a single factor test. The factors that had a significant influence on the number of viable bacteria of B. velezensis BHZ-29 were selected by an orthogonal test. A Box-Behnken design experiment was conducted to obtain the optimal fermentation conditions, and highest number of viable bacteria and antibacterial titer. Results: Molasses, peptone, and magnesium sulfate had significant effects on the viable count and antibacterial titer of B. velezensis BHZ-29. The viable count of B. velezensis BHZ-29 increased from 7.83 × 109 to 2.17 × 1010 CFU/mL, and the antibacterial titer increased from 111.67 to 153.13 mm/mL when the optimal media were used. The optimal fermentation conditions for B. velezensis BHZ-29 were as follows: temperature 25.57°C, pH 7.23, culture time 95.90 h, rotation speed 160 rpm, amount of inoculant 2%, and liquid volume 100 ml. After the optimization of fermentation conditions, the number of viable bacteria increased to 3.39 × 1010 CFU/mL, and the bacteriostatic titer increased to 158.85 mm/ml.The plant height and leaf number of cotton plants treated with BHZ-29 fermentation broth were higher than those of cotton inoculated with Verticillium dahliae. The number of bacteria was 1.15 × 107 CFU/g, and the number of fungi was 1.60 × 105 spores/g. The disease index of the cotton seedlings treated with the optimized fermentation broth was 2.2, and a control effect of 93.8% was achieved. B. velezensis BHZ-29 could reduce the disease index of cotton Verticillium wilt and had a controlling effect on the disease. The best effect was achieved in the treatment group with an inoculation concentration of 2 × 108 CFU/ml, the disease index was 14.50, and a control effect of 84.18% was achieved. Discussion: The fermentation process parameters of the number of viable bacteria and antibacterial titer by strain B. velezensis BHZ-29 were optimized to lay a foundation for the practical production and application of strain B. velezensis BHZ-29 in agriculture.

11.
Adv Sci (Weinh) ; 11(5): e2305339, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044319

RESUMO

Pivotal roles of extracellular vesicles (EVs) in the pathogenesis of central nervous system (CNS) disorders including acute brain injury are increasingly acknowledged. Through the analysis of EVs packaged miRNAs in plasma samples from patients with intracerebral hemorrhage (ICH), it is discovered that the level of EVs packaged miR-143-3p (EVs-miR-143-3p) correlates closely with perihematomal edema and neurological outcomes. Further study reveals that, upon ICH, EVs-miR-143-3p is robustly secreted by astrocytes and can shuttle into brain microvascular endothelial cells (BMECs). Heightened levels of miR-143-3p in BMECs induce the up-regulated expression of cell adhesion molecules (CAMs) that bind to circulating neutrophils and facilitate their transendothelial cell migration (TEM) into brain. Mechanism-wise, miR-143-3p directly targets ATP6V1A, resulting in impaired lysosomal hydrolysis ability and reduced autophagic degradation of CAMs. Importantly, a VCAM-1-targeting EVs system to selectively deliver miR-143-3p inhibitor to pathological BMECs is created, which shows satisfactory therapeutic effects in both ICH and traumatic brain injury (TBI) mouse models. In conclusion, the study highlights the causal role of EVs-miR-143-3p in BMECs' dysfunction in acute brain injury and demonstrates a proof of concept that engineered EVs can be devised as a potentially applicable nucleotide drug delivery system for the treatment of CNS disorders.


Assuntos
Lesões Encefálicas , Vesículas Extracelulares , MicroRNAs , Humanos , Animais , Camundongos , Células Endoteliais , Migração Transendotelial e Transepitelial , Astrócitos , Neutrófilos , Movimento Celular
12.
Cell Death Differ ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902548

RESUMO

Persistent neuroinflammation and progressive neuronal loss are defining features of acute brain injury including traumatic brain injury (TBI) and cerebral stroke. Microglia, the most abundant type of brain-resident immune cells, continuously surveil the environment and play a central role in shaping the inflammatory state of the central nervous system (CNS). In the study, we discovered that the protein expression of METTL3 (a m6A methyltransferase) was upregulated in inflammatory microglia independent of increased Mettl3 gene transcription following TBI in both human and mouse subjects. Subsequently, we identified TRIP12, a HECT-domain E3 ubiquitin ligase, as a negative regulator of METTL3 protein expression by facilitating METTL3 K48-linked polyubiquitination. Importantly, selective ablation of Mettl3 inhibited microglial pathogenic activities, diminished neutrophil infiltration, rescued neuronal loss and facilitated functional recovery post-TBI. Using MeRIP-seq and CUT&Tag sequencing, we identified that METTL3 promoted the expression of Basic Leucine Zipper Transcriptional Factor ATF-Like (BATF), which in turn directly bound to a cohort of characteristic inflammatory cytokines and chemokine genes. Enhanced activities of BATF in microglia elicited TNF-dependent neurotoxicity and can also promote neutrophil recruitment through releasing CXCL2. Pharmacological inhibition of METTL3 using a BBB-penetrating drug-loaded nano-system showed satisfactory therapeutic effects in both TBI and stroke mouse models. Collectively, our findings identified METTL3-m6A-BATF axis as a potential therapeutic target for terminating detrimental neuroinflammation and progressive neuronal loss following acute brain injury. METTL3 protein is significantly up-regulated in inflammatory microglia due to the decreased proteasomal degradation mediated by TRIP12 and ERK-USP5 pathways. METTL3 stabilized BATF mRNA stability and promoted BATF expression through the m6A-IGF2BP2-dependent mechanism. Elevated expression of BATF elicits a pro-inflammatory gene program in microglia, and aggravates neuroinflammatory response including local immune responses and peripheral immune cell infiltration. Genetic deletion or pharmaceutically targeting METTL3-BATF axis suppressed microglial pro-inflammatory activities and promoted neurological recovery following TBI and stroke.

13.
J Insect Sci ; 13: 151, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24784492

RESUMO

Abstract Endophytic microorganisms reside within plant tissues and have often been found to promote plant growth. In this study, endophytic microorganisms were isolated from the roots, stems, leaves, and seeds of healthy drunken horse grass, Achnatherum inebrians (Hance) Keng (Poales: Poaceae), through the use of a grinding separation method and identified by a dual approach of morphological and physiological observation and 16S rRNA gene-based (for bacteria) and internal transcribed sequence-based (for fungi) molecular identification. The endophytes were then inoculated into liquid media for fermentation, and their crude extracts were employed for insecticidal activity tests using slide disc immersion and nebulization methods. A total of 89 bacteria species, which were classified into eight genera, Bacillus, Pseudomonas, Actinomyces, Corynebacterium, Acinetobacter, Sphingomonas, Paenibacillus, and Phyllobacterium, and two fungi, Claviceps and Chaetomium, were isolated. Of these species, isolates Streptomyces albus (Rossi-Doria) Waksman and Henrici (Actinomycetales: Streptomycetaceae) (GA) and Claviceps purpurea (Fr.) Tul. (Hypocreales: Clavicipitaceae) (PF-2) were shown to produce mortality rates of more than 90% in the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), after first and second screenings. The isolates PF-2 and GA associated with A. inebrians had significant insecticidal activities towards A. gossypii Glover (Hemiptera: Aphididae) and may provide a new biological resource for exploring a new microbial insecticide.


Assuntos
Afídeos/microbiologia , Agentes de Controle Biológico , Endófitos/isolamento & purificação , Poaceae/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , China , Produtos Agrícolas/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Fúngico/genética , DNA Intergênico/genética , Fungos/genética , Fungos/isolamento & purificação , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
14.
Front Microbiol ; 14: 1295722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053554

RESUMO

Introduction: The soil microbial community plays an important role in modulating cotton soil fertility. However, the effects of chemical fertilizer combined with organic fertilizer on soil chemical properties, microbial community structure, and crop yield and quality in arid areas are still unclear. This study aimed to explore the effects of different organic fertilizers on soil microbial community structure and diversity and cotton growth and yield. Methods: High-throughput sequencing was used to study the soil bacteria and fungi in different growth stages of cotton. The field fertilization experiment had five treatments. Results: The results indicated that the treatments of chemical fertilizer reduction combined with organic fertilizer significantly increased soil available nitrogen and phosphorus in cotton field. There were significant differences in the abundance of the bacterial and fungal communities in the dominant phyla among the treatments. At the phyla level, there were not significantly different in the diversity of bacteria and fungi among treatments. There were significant differences in the composition and diversity of bacterial and fungal communities during the entire cotton growth period (p = 0.001). The rhizosphere bacterial and fungal community structure was significantly affected by soil TK, NH4+, AK, TP, AN, and NO3-. The different fertilization treatments strongly influenced the modular structure of the soil bacterial and fungal community co-occurrence network. A reduction in chemical fertilizer combined with organic fertilizer significantly improved cotton stem diameter and seed yield, and the effect of the biological organic fertilizer on plant growth and yield formation was greater than that of ordinary organic fertilizer. Discussion: This study provide a scientific and technical basis for the establishment of environmentally friendly green fertilization technology for cotton in arid areas and the promotion of sustainable development of cotton industry.

15.
Wei Sheng Wu Xue Bao ; 52(10): 1297-308, 2012 Oct 04.
Artigo em Chinês | MEDLINE | ID: mdl-23289329

RESUMO

OBJECTIVE: The aim of this study was to investigate the composition and distribution variation of endophytic bacteria and fungi in Achnatherum inebrians. METHODS: The DNA of seed, leaf, stem and root was extracted with liquid nitrogen grinding method. Then, 16S rDNA and Internally Transcribed Spacer (ITS) sequence were digested with restriction enzymes Hha I , Rsa I and Hhae III, Hinf I to obtain terminal restriction fragments. The terminal restriction fragments were matched to bacterial and fungal genera by the T-RFLP Analysis Program, and the community component and similarity of endophyte in Achnatherum inebrians were analyzed. RESULTS: The diversity of endophytic bacteria and fungi was the most abundant in root and seed of Achnatherum inebrians. All the predominant bacterial population was Bacillus (above 29%) in different organs of Achnatherum inebrians. The predominant fungal population was Mycosphaerella (6.5%), Teratosphaeria (4.5%), Fragum (1.1%), Sebacina (11.3%) in seed, leaf, stem and root, respectively. The structure of the bacterial communities in the stem and leaf were similar, whereas the structure of the bacterial communities in the seed and other tissue were different. The structure of the fungi communities in the stem and seed were similar, whereas the structure of the fungi communities in the leaf and other tissue were different. CONCLUSION: There was abundant endophytic microbial diversity in Achnatherum inebrians.


Assuntos
Bactérias/isolamento & purificação , Endófitos/isolamento & purificação , Poaceae/microbiologia , Bactérias/classificação , Bactérias/genética , Endófitos/classificação , Endófitos/genética , Endófitos/fisiologia , Dados de Sequência Molecular , Filogenia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Poaceae/fisiologia , Polimorfismo de Fragmento de Restrição
16.
J Clin Med ; 11(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35887760

RESUMO

Acute respiratory failure (ARF) with a high incidence among moderate-to-severe traumatic brain injury (M-STBI) patients plays a pivotal role in worsening neurological outcomes. Traumatic subarachnoid hemorrhage (tSAH) is highly prevalent in M-STBI, which is associated with significant adverse outcomes. In this retrospective cohort study, we aimed to explore the association between the severity of the tSAH and ARF in the M-STBI population. A total of 771 subjects were reviewed. Clinical and neuroimaging data of M-STBI patients were retrospectively collected, and ARF was ascertained retrospectively based on their electronic medical record. The degree of tSAH was classified according to Fisher's criteria, and the grade of tSAH was dichotomized to a low Fisher grade (Fisher grade 1-2) and a high Fisher grade (Fisher grade 3-4). After exclusion procedures, the data of 695 M-STBI patients were analyzed. A total of 284 (30.8%) had a high Fisher grade on admission. The overall rate of ARF within 48 h upon admission was 34.4% (239/695); it was 29.5% (142/481) and 46.3% (99/214) for the low and high Fisher groups, respectively. In a full cohort, a high Fisher grade was associated with ARF after adjusting for age, gender, GCS, smoking history, comorbidities, multiple injuries, characteristics of TBI, and pulmonary factors (OR 1.78; 95% CI, 1.11-2.85, p = 0.016). This result remained robust in the comparisons after PSM (71/132, 42.8% vs. 53/132, 31.9%; OR, 1.59; 95% CI, 1.02-2.49, p = 0.042). A high Fisher SAH grade exposure on admission is associated with ARF in M-STBI patients.

17.
Front Cell Neurosci ; 16: 850866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321205

RESUMO

Astrocytes are essential in maintaining normal brain functions such as blood brain barrier (BBB) homeostasis and synapse formation as the most abundant cell type in the central nervous system (CNS). After the stroke, astrocytes are known as reactive astrocytes (RAs) because they are stimulated by various damage-associated molecular patterns (DAMPs) and cytokines, resulting in significant changes in their reactivity, gene expression, and functional characteristics. RAs perform multiple functions after stroke. The inflammatory response of RAs may aggravate neuro-inflammation and release toxic factors to exert neurological damage. However, RAs also reduce excitotoxicity and release neurotrophies to promote neuroprotection. Furthermore, RAs contribute to angiogenesis and axonal remodeling to promote neurological recovery. Therefore, RAs' biphasic roles and mechanisms make them an effective target for functional recovery after the stroke. In this review, we summarized the dynamic functional changes and internal molecular mechanisms of RAs, as well as their therapeutic potential and strategies, in order to comprehensively understand the role of RAs in the outcome of stroke disease and provide a new direction for the clinical treatment of stroke.

18.
Front Cell Neurosci ; 16: 892197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783103

RESUMO

Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-dependent serine/threonine-protein kinase, promotes neurons apoptosis in ischemic stroke and Alzheimer's disease (AD). We hypothesized that knockdown DAPK1 may play a protective role in traumatic brain injury (TBI) and explore underlying molecular mechanisms. ELISA, Western blotting, immunofluorescence, dual-luciferase assay, and Reverse Transcription and quantitative Polymerase Chain Reaction (RT-qPCR) were used to determine the mechanism for the role of DAPK1 in TBI. Open field and novel objective recognition tests examined motor and memory functions. The morphology and number of synapses were observed by transmission electron microscopy and Golgi staining. DAPK1 was mainly found in neurons and significantly increased in TBI patients and TBI mice. The dual-luciferase assay showed that DAPK1 was upregulated by miR-124 loss. The number of TUNEL+ cells, expression levels of cleaved caspase3 and p-NR2B/NR2B were significantly reduced after knocking-down DAPK1 or overexpressing miR-124 in TBI mice; and motor and memory dysfunction was recovered. After Tat-NR2B were injected in TBI mice, pathological and behavioral changes were mitigated while the morphology while the number of synapses were not affected. Overall, DAPK1 is a downstream target gene of miR-124 that regulates neuronal apoptosis in TBI mice via NR2B. What's more, DAPK1 restores motor and memory dysfunctions without affecting the number and morphology of synapses.

19.
Redox Biol ; 54: 102390, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35793583

RESUMO

Mitochondrial dysfunction and oxidative injury, which contribute to worsening of neurological deficits and poor clinical outcomes, are hallmarks of secondary brain injury after TBI. Adiponectin (APN), beyond its well-established regulatory effects on metabolism, is also essential for maintaining normal brain functions by binding APN receptors that are ubiquitously expressed in the brain. Currently, the significance of the APN/APN receptor (AdipoR) signaling pathway in secondary injury after TBI and the specific mechanisms have not been conclusively determined. In this study, we found that APN knockout aggravated brain functional deficits, increased brain edema and lesion volume, and exacerbated oxidative stress as well as apoptosis after TBI. These effects were significantly alleviated after APN receptor agonist (AdipoRon) treatment. Moreover, we found that AdipoR1, rather than AdipoR2, mediated the protective effects of APN/AdipoR signaling against oxidative stress and brain injury after TBI. In neuron-specific AdipoR1 knockout mice, mitochondrial damage was more severe after TBI, indicating a potential association between APN/AdipoR1 signaling inactivation and mitochondrial damage. Mechanistically, neuron-specific knockout of SIRT3, the most important deacetylase in the mitochondria, reversed the neuroprotective effects of AdipoRon after TBI. Then, PRDX3, a critical antioxidant enzyme in the mitochondria, was identified as a vital downstream target of the APN/SIRT3 axis to alleviate oxidative injury after TBI. Finally, we revealed that APN/AdipoR1 signaling promotes SIRT3 transcription by activating the AMPK-PGC pathway. In conclusion, APN/AdipoR1 signaling plays a protective role in post-TBI oxidative damage by restoring the SIRT3-mediated mitochondrial homeostasis and antioxidant system.


Assuntos
Lesões Encefálicas Traumáticas , Mitocôndrias , Estresse Oxidativo , Receptores de Adiponectina , Sirtuína 3 , Adiponectina/genética , Adiponectina/metabolismo , Animais , Antioxidantes/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Transdução de Sinais , Sirtuína 3/genética , Sirtuína 3/metabolismo
20.
Front Neurol ; 13: 1006227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330427

RESUMO

Objectives: Traumatic intracerebellar hematoma (TICH) is a very rare entity with a high morbidity and mortality rate, and there is no consensus on its optimal surgical management. In particular, whether and when to place external ventricle drainage in TICH patients without acute hydrocephalus pre-operation is still controversial. Methods: A single-institutional, retrospective analysis of total of 47 TICH patients with craniectomy hematoma evacuation in a tertiary medical center from January 2009 to October 2020 was performed. Primary outcomes were mortality in hospital and neurological function evaluated by GOS at discharge and 6 months after the ictus. Special attention was paid to the significance of external ventricular drainage (EVD) in TICH patients without acute hydrocephalus on admission. Results: Analysis of the clinical characteristics of the TICH patients revealed that the odds of use of EVD were seen in patients with IVH, fourth ventricle compression, and acute hydrocephalus. Placement of EVD at the bedside can significantly improve the GCS score before craniotomy, as well as the neurological score at discharge and 6 months. Compared with the only hematoma evacuation (HE) group, there is a trend that EVD can reduce hospital mortality and decrease the occurrence of delayed hydrocephalus, although the difference is not statistically significant. In addition, EVD can reduce the average NICU stay time, but has no effect on the total length of stay. Moreover, our data showed that EVD did not increase the risk of associated bleeding and intracranial infection. Interestingly, in terms of neurological function at discharge and 6 month after the ictus, even though without acute hydrocephalus on admission, the TICH patients can still benefit from EVD insertion. Conclusion: For TICH patients, perioperative EVD is safe and can significantly improve neurological prognosis. Especially for patients whose GCS dropped by more than 2 points before the operation, EVD can significantly improve the patient's GCS score, reduce the risk of herniation, and gain more time for surgical preparation. Even for TICH patients without acute hydrocephalus on admission CT scan, EVD placement still has positive clinical significance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa