Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8013): 861-868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750353

RESUMO

A central assumption of neuroscience is that long-term memories are represented by the same brain areas that encode sensory stimuli1. Neurons in inferotemporal (IT) cortex represent the sensory percept of visual objects using a distributed axis code2-4. Whether and how the same IT neural population represents the long-term memory of visual objects remains unclear. Here we examined how familiar faces are encoded in the IT anterior medial face patch (AM), perirhinal face patch (PR) and temporal pole face patch (TP). In AM and PR we observed that the encoding axis for familiar faces is rotated relative to that for unfamiliar faces at long latency; in TP this memory-related rotation was much weaker. Contrary to previous claims, the relative response magnitude to familiar versus unfamiliar faces was not a stable indicator of familiarity in any patch5-11. The mechanism underlying the memory-related axis change is likely intrinsic to IT cortex, because inactivation of PR did not affect axis change dynamics in AM. Overall, our results suggest that memories of familiar faces are represented in AM and perirhinal cortex by a distinct long-latency code, explaining how the same cell population can encode both the percept and memory of faces.


Assuntos
Reconhecimento Facial , Memória de Longo Prazo , Reconhecimento Psicológico , Lobo Temporal , Animais , Face , Reconhecimento Facial/fisiologia , Macaca mulatta/fisiologia , Memória de Longo Prazo/fisiologia , Neurônios/fisiologia , Córtex Perirrinal/fisiologia , Córtex Perirrinal/citologia , Estimulação Luminosa , Reconhecimento Psicológico/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Temporal/citologia , Lobo Temporal/fisiologia , Rotação
2.
J Physiol ; 599(22): 5047-5060, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34292589

RESUMO

KEY POINTS: M1 intrinsically photosensitive retinal ganglion cells (ipRGCs) are known to encode absolute light intensity (irradiance) for non-image-forming visual functions (subconscious vision), such as circadian photoentrainment and the pupillary light reflex. It remains unclear how M1 cells respond to relative light intensity (contrast) and patterned visual signals. The present study identified a special form of contrast sensitivity (suppressed-by-contrast) in M1 cells, suggesting a role of patterned visual signals in regulating non-image-forming vision and a potential role of M1 ipRGCs in encoding image-forming visual cues. The study also uncovered a synaptic mechanism and a retinal circuit mediated by vesicular glutamate transporter 3 (vGluT3) amacrine cells that underlie the suppressed-by-contrast response of M1 cells. M1 ipRGC subtypes (M1a and M1b) were revealed that are distinguishable based on synaptic connectivity with vGluT3 amacrine cells, receptive field properties, intrinsic photo sensitivity and membrane excitability, and morphological features, suggesting a division of visual tasks among discrete M1 subpopulations. ABSTRACT: The M1 type ipRGC (intrinsically photosensitive retinal ganglion cell) is known to encode ambient light signals for non-image-forming visual functions such as circadian photo-entrainment and the pupillary light reflex. Here, we report that a subpopulation of M1 cells (M1a) in the mouse retina possess the suppressed-by-contrast (sbc) trigger feature that is a receptive field property previously found only in ganglion cells mediating image-forming vision. Using optogenetics and the dual patch clamp technique, we found that vesicular glutamate transporter 3 (vGluT3) (vGluT3) amacrine cells make glycinergic, but not glutamatergic, synapses specifically onto M1a cells. The spatiotemporal and pharmacological properties of visually evoked responses of M1a cells closely matched the receptive field characteristics of vGluT3 cells, suggesting a major role of the vGluT3 amacrine cell input in shaping the sbc trigger feature of M1a cells. We found that the other subpopulation of M1 cells (M1b), which did not receive a direct vGluT3 cell input, lacked the sbc trigger feature, being distinctively different from M1a cells in intrinsic photo responses, membrane excitability, receptive-field characteristics and morphological features. Together, the results reveal a retinal circuit that uses the sbc trigger feature to regulate irradiance coding and potentially send image-forming cues to non-image-forming visual centres in the brain.


Assuntos
Células Amácrinas , Células Ganglionares da Retina , Animais , Camundongos , Retina , Opsinas de Bastonetes , Visão Ocular
3.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38106108

RESUMO

A fundamental paradigm in neuroscience is the concept of neural coding through tuning functions 1 . According to this idea, neurons encode stimuli through fixed mappings of stimulus features to firing rates. Here, we report that the tuning of visual neurons can rapidly and coherently change across a population to attend to a whole and its parts. We set out to investigate a longstanding debate concerning whether inferotemporal (IT) cortex uses a specialized code for representing specific types of objects or whether it uses a general code that applies to any object. We found that face cells in macaque IT cortex initially adopted a general code optimized for face detection. But following a rapid, concerted population event lasting < 20 ms, the neural code transformed into a face-specific one with two striking properties: (i) response gradients to principal detection-related dimensions reversed direction, and (ii) new tuning developed to multiple higher feature space dimensions supporting fine face discrimination. These dynamics were face specific and did not occur in response to objects. Overall, these results show that, for faces, face cells shift from detection to discrimination by switching from an object-general code to a face-specific code. More broadly, our results suggest a novel mechanism for neural representation: concerted, stimulus-dependent switching of the neural code used by a cortical area.

4.
Cell Death Dis ; 9(8): 799, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038234

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as key regulators of crucial cellular processes. However, the molecular mechanisms of many lncRNA functions remain uncharacterized. Sox2ot is an evolutionarily conserved lncRNA that transcriptionally overlaps the pluripotency gene Sox2, which maintains the stemness of embryonic stem cells and tissue-specific stem cells. Here, we show that Sox2ot is expressed in the developing mouse cerebral cortex, where it represses neural progenitor (NP) proliferation and promotes neuronal differentiation. Sox2ot negatively regulates self-renewal of neural stem cells, and is predominately expressed in the nucleus and inhibits Sox2 levels. Sox2ot forms a physical interaction with a multifunctional transcriptional regulator YY1, which binds several CpG islands in the Sox2 locus in a Sox2ot-dependent manner. Similar to Sox2ot, YY1 represses NP expansion in vivo. These results demonstrate a regulatory role of Sox2ot in promoting cortical neurogenesis, possibly by repressing Sox2 expression in NPs, through interacting with YY1.


Assuntos
RNA Longo não Codificante/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Autorrenovação Celular , Córtex Cerebral/metabolismo , Ilhas de CpG , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Ligação Proteica , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa