Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344737

RESUMO

The vibration of a planetary gearbox (PG) is complex and mutually modulated, which makes the weak features of incipient fault difficult to detect. To target this problem, a novel method, based on an adaptive order bispectrum slice (AOBS) and the fault characteristics energy ratio (FCER), is proposed. The order bispectrum (OB) method has shown its effectiveness in the feature extraction of bearings and fixed-shaft gearboxes. However, the effectiveness of the PG still needs to be explored. The FCER is developed to sum up the fault information, which is scattered by mutual modulation. In this method, the raw vibration signal is firstly converted to that in the angle domain. Secondly, the characteristic slice of AOBS is extracted. Different from the conventional OB method, the AOBS is extracted by searching for a characteristic carrier frequency adaptively in the sensitive range of signal coupling. Finally, the FCER is summed up and calculated from the fault features that were dispersed in the characteristic slice. Experimental data was processed, using both the AOBS-FCER method, and the method that combines order spectrum analysis with sideband energy ratio (OSA-SER), respectively. Results indicated that the new method is effective in incipient fault feature extraction, compared with the methods of OB and OSA-SER.

2.
Sensors (Basel) ; 20(2)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968609

RESUMO

The dynamic coefficients identification of journal bearings is essential for instability analysis of rotation machinery. Aiming at the measured displacement of a single location, an improvement method associated with the Kalman filter is proposed to estimate the bearing dynamic coefficients. Firstly, a finite element model of the flexible rotor-bearing system was established and then modified by the modal test. Secondly, the model-based identification procedure was derived, in which the displacements of the shaft at bearings locations were estimated by the Kalman filter algorithm to identify the dynamic coefficients. Finally, considering the effect of the different process noise covariance, the corresponding numerical simulations were carried out to validate the preliminary accuracy. Furthermore, experimental tests were conducted to confirm the practicality, where the real stiffness and damping were comprehensively identified under the different operating conditions. The results show that the proposed method is not only highly accurate, but also stable under different measured locations. Compared with the conventional method, this study presents a more than high practicality approach to identify dynamic coefficients, including under the resonance condition. With high efficiency, it can be extended to predict the dynamic behaviour of rotor-bearing systems.

3.
Sensors (Basel) ; 18(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614841

RESUMO

Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most current methods focus on qualitative crack identification and image processing. In this study, eddy current pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.

4.
Sensors (Basel) ; 18(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200505

RESUMO

The planetary gearbox is at the heart of most rotating machinery. The premature failure and subsequent downtime of a planetary gearbox not only seriously affects the reliability and safety of the entire rotating machinery but also results in severe accidents and economic losses in industrial applications. It is an important and challenging task to accurately detect failures in a planetary gearbox at an early stage to ensure the safety and reliability of the mechanical transmission system. In this paper, a novel method based on wavelet packet energy (WPE) and modulation signal bispectrum (MSB) analysis is proposed for planetary gearbox early fault diagnostics. First, the vibration signal is decomposed into different time-frequency subspaces using wavelet packet decomposition (WPD). The WPE is calculated in each time-frequency subspace. Secondly, the relatively high energy vectors are selected from a WPE matrix to obtain a reconstructed signal. The reconstructed signal is then subjected to MSB analysis to obtain the fault characteristic frequency for fault diagnosis of the planetary gearbox. The validity of the proposed method is carried out through analyzing the vibration signals of the test planetary gearbox in two fault cases. One fault is a chipped sun gear tooth and the other is an inner-race fault in the planet gear bearing. The results show that the proposed method is feasible and effective for early fault diagnosis in planetary gearboxes.

5.
ISA Trans ; 120: 271-292, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33714543

RESUMO

Transient impulses caused by local defects are critical for the fault detection of rotating machines. However, they are extremely weak and overwhelmed in the strong noise and harmonic components, making the transient features are very difficult to be extracted. This paper proposes an adaptive multi-scale improved differential filter (AMIDIF) to enhance the identification of transient impulses for rotating machine fault diagnosis. In this scheme, firstly, the AMIDIF is performed to decompose the measured signal of rotating machine into a series of multi-scale improved differential filter (MIDIF) filtered signals. Subsequently, in view of the MIDIF filtered signals exhibit varying extents of validity in revealing fault features, a weighted reconstruction method using correlation analysis is proposed in which the weighted coefficients are counted and distributed to the corresponding MIDIF filtered signals to highlight the effective MIDIF filtered signals and weaken the invalid ones. Finally, the transient impulse components of rotating machinery are obtained by multiplying the weighted coefficients and the MIDIF filtered signals under different scales. Furthermore, the fault types of rotating machines are inferred from the fault defect frequencies in the envelope spectrum of the transient impulses. Simulation analysis and experimental studies are implemented to verify the performance of the AMIDIF compared with the state-of-the-art methods including spectral kurtosis (SK), multi-scale average combination different morphological filter (ACDIF) and multi-scale morphology gradient product operation (MGPO). The results prove that the AMIDIF has excellent performance in extracting transient features for rotating machines fault diagnosis.

6.
ISA Trans ; 101: 408-420, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32061355

RESUMO

Transient impulses are important information for machinery fault diagnosis. However, the transient features contained in the vibration signals generated by planetary gearboxes are usually immersed by a large amount of background noise and harmonic components. Even mathematical morphology (MM) is an excellent anti-noise signal processing method that can directly extract the geometry of impulse features in the time domain, but the four basic operators of MM can only extract one-way impulses while cannot extract the bidirectional impulses effectively at the same time. To accurately extract the impulse feature information, a novel method for fault detection of planetary gearbox based on an enhanced average (EAVG) filter and modulated signal bispectrum (MSB) is proposed. Firstly, the properties of the extracted impulses based on the four basic operators of MM will be divided into two categories of enhanced average operators. The four EAVG filters consist of the average weighted combination of enhanced average operators, and then the best EAVG filter is selected based on correlation coefficient to implement on the original vibration signal. It allows EAVG filter to extract positive and negative impulses of vibration signal, thereby improving the accuracy of planetary gearbox fault detection. Subsequently, the performance of the EAVG filter is influenced by the length of its structural element (SE), which is adaptively determined using an indicator based kurtosis. Then, the EAVG filter selects the optimal SE length to eliminate the interference of background noise and harmonic components to enhance the impulse components of the vibration signal. However, the nonlinear modulation components that are related to the fault types and severities are not extracted exactly and still remained in the filtered signal by EAVG. Finally, the MSB is utilized to the EAVG filtered signal to decompose the modulated components and extract the fault features. The advantages of EAVG over average (AVG) filter are clarified in the simulation study. In addition, the EAVG-MSB is validated by analyzing the vibration signals of planetary gearboxes with sun gear chipped tooth, sun gear misalignment and bearing inner race fault. The results indicate that the EAVG-MSB is effective and accurate in feature extraction compared with the combination morphological filter-hat transform (CMFH) and average combination difference morphological filter (ACDIF), and the feasibility of the EAVG-MSB are proved for planetary gearbox condition monitoring and fault diagnosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa