Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 54(43): 6555-66, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26465056

RESUMO

The Hippo pathway was originally identified and named through screening for mutations in Drosophila, and the core components of the Hippo pathway are highly conserved in mammals. In the Hippo pathway, MST1/2 and LATS1/2 regulate downstream transcription coactivators YAP and TAZ, which mainly interact with TEAD family transcription factors to promote tissue proliferation, self-renewal of normal and cancer stem cells, migration, and carcinogenesis. The Hippo pathway was initially thought to be quite straightforward; however, recent studies have revealed that YAP/TAZ is an integral part and a nexus of a network composed of multiple signaling pathways. Therefore, in this review, we will summarize the latest findings on events upstream and downstream of YAP/TAZ and the ways of regulation of YAP/TAZ. In addition, we also focus on the crosstalk between the Hippo pathway and other tumor-related pathways and discuss their potential as therapeutic targets.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Hipóxia/metabolismo , Sistema de Sinalização das MAP Quinases , Ácido Mevalônico/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Receptores Androgênicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fatores de Transcrição/genética , Via de Sinalização Wnt
2.
Mil Med Res ; 10(1): 56, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001521

RESUMO

BACKGROUND: G-protein coupled receptors (GPCRs) are recognized as attractive targets for drug therapy. However, it remains poorly understood how GPCRs, except for a few chemokine receptors, regulate the progression of liver fibrosis. Here, we aimed to reveal the role of GPR65, a proton-sensing receptor, in liver fibrosis and to elucidate the underlying mechanism. METHODS: The expression level of GPR65 was evaluated in both human and mouse fibrotic livers. Furthermore, Gpr65-deficient mice were treated with either bile duct ligation (BDL) for 21 d or carbon tetrachloride (CCl4) for 8 weeks to investigate the role of GPR65 in liver fibrosis. A combination of experimental approaches, including Western blotting, quantitative real-time reverse transcription­polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA), confocal microscopy and rescue studies, were used to explore the underlying mechanisms of GPR65's action in liver fibrosis. Additionally, the therapeutic potential of GPR65 inhibitor in the development of liver fibrosis was investigated. RESULTS: We found that hepatic macrophages (HMs)-enriched GPR65 was upregulated in both human and mouse fibrotic livers. Moreover, knockout of Gpr65 significantly alleviated BDL- and CCl4-induced liver inflammation, injury and fibrosis in vivo, and mouse bone marrow transplantation (BMT) experiments further demonstrated that the protective effect of Gpr65 knockout is primarily mediated by bone marrow-derived macrophages (BMMs). Additionally, in vitro data demonstrated that Gpr65 silencing and GPR65 antagonist inhibited, while GPR65 overexpression and application of GPR65 endogenous and exogenous agonists enhanced the expression and release of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and transforming growth factor-ß (TGF-ß), all of which subsequently promoted the activation of hepatic stellate cells (HSCs) and the damage of hepatocytes (HCs). Mechanistically, GPR65 overexpression, the acidic pH and GPR65 exogenous agonist induced up-regulation of TNF-α and IL-6 via the Gαq-Ca2+-JNK/NF-κB pathways, while promoted the expression of TGF-ß through the Gαq-Ca2+-MLK3-MKK7-JNK pathway. Notably, pharmacological GPR65 inhibition retarded the development of inflammation, HCs injury and fibrosis in vivo. CONCLUSIONS: GPR65 is a major regulator that modulates the progression of liver fibrosis. Thus, targeting GPR65 could be an effective therapeutic strategy for the prevention of liver fibrosis.


Assuntos
Interleucina-6 , NF-kappa B , Animais , Humanos , Camundongos , Inflamação , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , NF-kappa B/metabolismo , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa/efeitos adversos
3.
J Neurol Sci ; 366: 127-134, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288790

RESUMO

Since Alzheimer's disease (AD) is becoming the prevalent dementia in the whole world, more underlying mechanisms are emerging. Long time has the transcription factor NF-κB been identified to participate in AD pathogenesis, various studies have focused on the causes and effects of AD that are linked to NF-κB. In this review we discuss diverse environmental stimuli including oxidative stress, neuroinflammation and metabolism, involved signaling pathways such as PI3K/AKT, MAPK and AGE/RAGE/GSK-3 and newly found ncRNAs that mediate neuron toxicity or neuron protection through NF-κB activation and the following response associated with the same factors in AD. These may provide future orientation of investigation at transcription level and support efficient treatment to AD by a better understanding of the upstream regulators and downstream effectors of NF-κB.


Assuntos
Doença de Alzheimer/metabolismo , NF-kappa B/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Humanos
4.
Gene ; 575(1): 1-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26341058

RESUMO

Hypoxic regions are common in solid tumors and have an impact on tumor progression and on the therapeutic response. However, the underlying mechanism for hypoxic tumor microenvironment has not been entirely elucidated. Recently, long noncoding RNAs (lncRNAs) are being increasingly recognized to contribute to carcinogenesis through diverse mechanisms. To date, several lncRNAs have been described in hypoxia-associated cancer process, implying a potential role in maintaining cellular homeostasis and enabling an adaptive survival under hypoxic stress conditions. While it has been widely accepted that a complex cellular network of gene products, such as protein and miRNA, take part in hypoxic cancer progression, it remains largely elusive how lncRNAs participate in it. In this review, we introduce an update view of lncRNAs, focusing on hypoxia-related lncRNAs. We hereby summarize the cause and consequence of hypoxia-modulated lncRNAs in cancer as well as their functional mechanisms, highlighting the specific roles of lncRNAs in hypoxia response in cancer.


Assuntos
Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Animais , Hipóxia Celular , Humanos , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética
5.
Gene ; 547(1): 1-9, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24967943

RESUMO

Over the past fifteen years, small regulatory RNAs, such as siRNA and miRNA, have been extensively investigated and the underlying molecular mechanisms have been well documented, suggesting that ncRNAs play a major function in many cellular processes. An expanding body of evidence reveals that long non-coding RNAs (lncRNAs), once described as dark matter, are involved in diverse cellular progresses, including regulation of gene expression, dosage compensation, genomic imprinting, nuclear organization and nuclear-cytoplasm trafficking via a number of complex mechanisms. The emerging links between lncRNAs and diseases as well as their tissue-specific expression patterns also indicate that lncRNAs comprise a core transcriptional regulatory circuitry. The function of lncRNAs is based on their sequence and structure; and they can combine with DNA, RNA, and proteins both in the nucleus and the cytoplasm. However, detailed insights into their biological and mechanistic functions are only beginning to emerge. In this review, we will mainly talk about diverse ways of action of lncRNAs in different sub-cellular locations and provide clues for following studies.


Assuntos
Núcleo Celular/genética , Citoplasma/genética , RNA não Traduzido/fisiologia , Impressão Genômica , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa