Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(24): e2207889, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899491

RESUMO

Printed flexible electronics have emerged as versatile functional components of wearable intelligent devices that bridge the digital information networks with biointerfaces. Recent endeavors in plant wearable sensors provide real-time and in situ insights to study phenotyping traits of crops, whereas monitoring of ethylene, the fundamental phytohormone, remains challenging due to the lack of flexible and scalable manufacturing of plant wearable ethylene sensors. Here the all-MXene-printed flexible radio frequency (RF) resonators are presented as plant wearable sensors for wireless ethylene detection. The facile formation of additive-free MXene ink enables rapid, scalable manufacturing of printed electronics, demonstrating decent printing resolution (2.5% variation), ≈30000 S m-1 conductivity and mechanical robustness. Incorporation of MXene-reduced palladium nanoparticles (MXene@PdNPs) facilitates 1.16% ethylene response at 1 ppm with 0.084 ppm limit of detection. The wireless sensor tags are attached on plant organ surfaces for in situ and continuously profiling of plant ethylene emission to inform the key transition of plant biochemistry, potentially extending the application of printed MXene electronics to enable real-time plant hormone monitoring for precision agriculture and food industrial management.


Assuntos
Nanopartículas Metálicas , Dispositivos Eletrônicos Vestíveis , Paládio , Produtos Agrícolas , Etilenos
2.
Compr Rev Food Sci Food Saf ; 17(2): 458-471, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33350075

RESUMO

Nelumbo nucifera Gaertn., also known as the sacred lotus, is extensively cultivated in Southeast Asia, primarily for food and as an herbal medicine. This article reviews studies published between 1995 and 2017, on flavonoid and phenolic acid profiles and contents of 154 different cultivars of lotus. So far, some 12 phenolic acids and 89 to 90 flavonoids (47 flavonols, 25 to 26 flavons, 8 flavan-3-ols, 4 flavanons, and 5 anthocyanins) have been isolated from different parts of the lotus plant, including its leaves (whole leaf, leaf pulp, leaf vein, and leaf stalk), seeds (seedpod, epicarp, coat, kernel, and embryo), and flowers (stamen, petal, pistil, and stalk), although not all of them have been quantified. Factors affecting flavonoids and phenolic acid profiles, including types of tissues and extracting factors, are discussed in this review, in order to maximize the application of the lotus and its polyphenols in the food industry. Health promotion activities, attributed to the presence of flavonoids and phenolic acids, are described along with toxicology studies, illustrating appropriate usage and safe consumption dosages of lotus extracts. This review also presents the controversies and discusses the research gaps that limit our ability to obtain a thorough understanding of the bioactivities of lotus extracts.

3.
Adv Healthc Mater ; : e2401269, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39468859

RESUMO

Bacterial-driven dental caries and tooth discoloration are growing concerns as the most common oral health problems. Current diagnostic methods and treatment strategies hardly allow simultaneous early detection and non-invasive treatment of these oral diseases. Herein, a wearable multifunctional double network hydrogel combined with polyaniline and barium titanate (PANI@BTO) nanoparticles is developed for oral microenvironment visualized sensing and sonodynamic therapy. Due to the colorimetric properties of polyaniline, the hydrogel displays a highly sensitive and selective response for visualized sensing of oral acidic microenvironment. Meanwhile, the barium titanate in the hydrogel efficiently generates reactive oxygen species (ROS) under ultrasound irradiation, realizing non-invasive treatment in the oral cavity. Through bacterial elimination experiments and tooth whitening studies, the hydrogel can achieve the dual effect of effectively inhibiting the growth of cariogenic bacteria and degrading tooth surface pigments. Owing to the visualized sensing of the oral acidic microenvironment and efficient sonodynamic therapy function, the proposed hydrogel system offers a solution for the prevention of caries and tooth whitening, which is promising in developing the biomedical system targeting the simultaneous sensing and therapy for oral diseases.

4.
Biosens Bioelectron ; 259: 116404, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772248

RESUMO

Periodontitis, a chronic disease, can result in irreversible tooth loss and diminished quality of life, highlighting the significance of timely periodontitis monitoring and treatment. Meanwhile, hydrogen sulfide (H2S) in saliva, produced by pathogenic bacteria of periodontitis, is an important marker for periodontitis monitoring. However, the easy volatility and chemical instability of the molecule pose challenges to oral H2S sensing. Here, we report a wearable hydrogel-based radio frequency (RF) sensor capable of in situ H2S detection and antibacterial treatment. The RF sensor comprises an agarose hydrogel containing conjugated silver nanoparticles-chlorhexidine (AG-AgNPs-CHL hydrogel) integrated with split-ring resonators. Adhered to a tooth, the hydrogel-based RF sensor enables wireless transmission of sensing signals to a mobile terminal and a concurrent release of the broad-spectrum antibacterial agent chlorhexidine without complex circuits. With the selective binding of the AgNPs to the sulfidion, the RF sensor demonstrates good sensitivity, a wide detection range (2-30 µM), and a low limit of detection (1.2 µM). Compared with standard H2S measurement, the wireless H2S sensor can distinguish periodontitis patients from healthy individuals in saliva sample tests. The hydrogel-based wearable sensor will benefit patients with periodontitis by detecting disease-related biomarkers for practical oral health management.


Assuntos
Antibacterianos , Técnicas Biossensoriais , Hidrogéis , Sulfeto de Hidrogênio , Nanopartículas Metálicas , Periodontite , Ondas de Rádio , Saliva , Prata , Humanos , Sulfeto de Hidrogênio/análise , Periodontite/microbiologia , Periodontite/tratamento farmacológico , Prata/química , Técnicas Biossensoriais/métodos , Hidrogéis/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Saliva/química , Saliva/microbiologia , Nanopartículas Metálicas/química , Clorexidina , Dispositivos Eletrônicos Vestíveis , Limite de Detecção
5.
Nat Commun ; 15(1): 4035, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740742

RESUMO

Rapid and accurate detection of respiratory virus aerosols is highlighted for virus surveillance and infection control. Here, we report a wireless immunoassay technology for fast (within 10 min), on-site (wireless and battery-free), and sensitive (limit of detection down to fg/L) detection of virus antigens in aerosols. The wireless immunoassay leverages the immuno-responsive hydrogel-modulated radio frequency resonant sensor to capture and amplify the recognition of virus antigen, and flexible readout network to transduce the immuno bindings into electrical signals. The wireless immunoassay achieves simultaneous detection of respiratory viruses such as severe acute respiratory syndrome coronavirus 2, influenza A H1N1 virus, and respiratory syncytial virus for community infection surveillance. Direct detection of unpretreated clinical samples further demonstrates high accuracy for diagnosis of respiratory virus infection. This work provides a sensitive and accurate immunoassay technology for on-site virus detection and disease diagnosis compatible with wearable integration.


Assuntos
Hidrogéis , Vírus da Influenza A Subtipo H1N1 , SARS-CoV-2 , Tecnologia sem Fio , Imunoensaio/métodos , Imunoensaio/instrumentação , Humanos , Hidrogéis/química , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Tecnologia sem Fio/instrumentação , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Aerossóis , COVID-19/diagnóstico , COVID-19/virologia , COVID-19/imunologia , Antígenos Virais/imunologia , Antígenos Virais/análise , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/isolamento & purificação , Limite de Detecção
6.
Biosens Bioelectron ; 251: 116136, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377637

RESUMO

Nutrition assessment is crucial for dietary guidance and prevention of malnutrition. Recent endeavors in wearable biochemical sensors have enabled real-time, in situ analysis of nutrients in sweat. However, the monitoring of riboflavin, an indispensable vitamin B involved in energy metabolism, remains challenging due to its trace level and variations in the sweat matrix. Herein, we report a wireless, battery-free, and flexible wearable biosensing system for the in situ monitoring of sweat riboflavin. Highly sensitive and selective electrochemical voltammetric detection is realized based on the synergistic effect of electrodeposited reduced graphene oxide (rGO) and platinum nanoparticles (PtNPs) with a low detection limit of 1.2 nM. The fully integrated system is capable of sweat sampling with the microfluidic patch, real-time riboflavin analysis and pH calibration with the flexible electrode array, as well as wirelessly simultaneous near field communication (NFC) energy harvesting and data transmission with the flexible circuit and a smartphone. On-body human sweat analysis demonstrates high accuracy cross-validated with gold-standard measurements, and reveals a strong correlation between sweat and urine riboflavin levels. The proposed wearable platform opens up attractive possibilities for noninvasive nutrient tracking, providing strong potential for personalized dietary guidance towards precision nutrition.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Dispositivos Eletrônicos Vestíveis , Humanos , Suor , Platina , Riboflavina
7.
Lab Chip ; 23(15): 3424-3432, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37404057

RESUMO

Creatinine and albumin are crucial biomarkers for health monitoring and their ratio in urine is an effective approach for albuminuria assessment. Herein, to address the challenges of point-of-care and efficient analysis of the biomarkers simultaneously, we developed a fully integrated handheld smartphone-based photoelectrochemical biosensing system. A miniaturized printed circuit board included a potentiostat for photocurrent measurements and single-wavelength light-emitting diodes (LEDs) for photo-excitation, which was controlled with a Bluetooth-enabled smartphone. Graphitic carbon nitride (g-C3N4)/chitosan nanocomposites were modified on a transparent indium tin oxide (ITO) electrode as photoactive materials. Creatinine was detected through chelate formation with copper ion probes, while albumin was recognized specifically by an antigen-antibody reaction based on immunoassay. The biosensing system demonstrated good linearity and high sensitivity, with detection ranges of 100 µg mL-1 to 1500 µg mL-1 for creatinine, and 9.9 µg mL-1 to 500 µg mL-1 for albumin. Spiked artificial urine samples with different concentrations were tested to confirm the practical validity of the biosensing system, where an acceptable recovery rate ranged from 98.7% to 105.3%. This portable photoelectrochemical biosensing platform provides a convenient and cost-effective method for biofluid analysis, which has an extensive prospect in point-of-care testing (POCT) for mobile health.


Assuntos
Técnicas Biossensoriais , Smartphone , Técnicas Eletroquímicas/métodos , Creatinina , Sistemas Automatizados de Assistência Junto ao Leito , Biomarcadores , Albuminas , Técnicas Biossensoriais/métodos , Limite de Detecção
8.
Biosens Bioelectron ; 234: 115363, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146537

RESUMO

As an efficient patient management tool of precision medicine, decentralized therapeutic drug monitoring (TDM) provides new vision for therapy adherence and health management of schizophrenia in a convenient manner. To dispense with psychologically burdensome blood sampling and to achieve real-time, noninvasive, and continual circulating tracking of drugs with narrow therapeutic window, we study the temporal metabolism of clozapine, an antipsychotic with severe side effect, in rat saliva by a wireless, integrated and patient-friendly smart lollipop sensing system. Highly sensitive and efficient sensing performance with acceptable anti-biofouling property was realized based on the synergistic effect of electrodeposited reduced graphene oxide and ionic liquids in pretreatment-free saliva with low detection limit and good accuracy cross-validated with conventional method. On this basis, continual salivary drug levels with distinctive pharmacokinetics were found in different routes of drug administration. Pilot experiment reveals a strong correlation between blood and saliva clozapine and a positive relationship between drug dosage and salivary drug level, indicating potential applications presented by noninvasive saliva analysis towards patient-centered and personalized pharmacotherapy and adherence management via proposed smart lollipop system.


Assuntos
Técnicas Biossensoriais , Clozapina , Esquizofrenia , Animais , Ratos , Clozapina/uso terapêutico , Esquizofrenia/tratamento farmacológico , Monitoramento de Medicamentos/métodos , Saliva/metabolismo , Conduta do Tratamento Medicamentoso , Técnicas Biossensoriais/métodos
9.
Biosens Bioelectron ; 222: 114945, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36462428

RESUMO

Breath acetone (BrAC) detection presents a promising scheme for noninvasive monitoring of metabolic health due to its close correlation to diets and exercise-regulated lipolysis. Herein, we report a Ti3C2Tx MXene-based wireless facemask for on-body BrAC detection and real-time tracking of lipid metabolism, where Ti3C2Tx MXene serves as a versatile nanoplatform for not only acetone detection but also breath interference filtration. The incorporation of in situ grown TiO2 and short peptides with Ti3C2Tx MXene further improves the acetone sensitivity and selectivity, while TiO2-MXene interfaces facilitate light-assisted response calibration. To further realize wearable breath monitoring, a miniaturized flexible detection tag has been integrated with a commercially available facemask, which enables facile BrAC detection and wireless data transmission. Through the hierarchically designed filtration-detection-calibration-transmission system, we realize BrAC detection down to 0.31 ppm (part per million) in breath. On-body breath tests validate the facemask in dynamically monitoring of lipid metabolism, which could guide dieter, athletes, and fitness enthusiasts to arrange diets and exercise activities. The proposed wearable platform opens up new possibility toward the practice of breath analysis as well as daily lipid metabolic management.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Acetona/análise , Acetona/metabolismo , Máscaras , Testes Respiratórios , Lipídeos
10.
Nutr Bull ; 47(4): 388-406, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36134894

RESUMO

Appropriate food intake and nutritional status are crucial for the maintenance of health and disease prevention. Conventional dietary assessment is mainly based on comparisons of nutrient intakes with reference intakes, failing to meet the needs of personalised nutritional guidance based on individual nutritional status. Given their capability of providing insights into health information non-invasively in real time, wearable technologies offer great opportunities for nutrition monitoring. Nutrient metabolic profiles can be monitored immediately and continuously which could potentially offer the possibility for the tracking and guiding of nutrient intake. Here, we review and highlight the recent advances in wearable sensors from the perspective of sensing technologies for nutrient detection in biofluids. The integration of biosensors with wearable devices serves as an ideal platform for the analysis of biofluids including sweat, saliva and tears. The wearable sensing systems applied to the analysis of typical nutrients and important metabolites are demonstrated in terms of carbohydrates, proteins, lipids, vitamins, minerals and others. Taking advantage of their high flexibility and lightweight, wearable sensors have been widely developed for the in situ quantitative detection of metabolic biomarkers. The technical principles, detection methods and applications are summarised. The challenges and future perspectives for wearable nutrition monitoring devices are discussed including the need to better determine relationships among nutrient metabolic profile, nutrient intake and food intake. With the development of materials, sensing techniques and manufacturing processes, wearable technologies are paving the way towards personalised precision nutrition, although there is still a long way to go before they can be utilised for practical clinical applications. Joint research efforts between nutrition scientists, doctors, engineers and sensor researchers are essential to further accelerate the realisation of reliable and practical wearable nutrition monitoring platforms.


Assuntos
Estado Nutricional , Dispositivos Eletrônicos Vestíveis , Suor , Ingestão de Alimentos , Nutrientes
11.
Anal Chim Acta ; 1206: 339796, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35473856

RESUMO

As a sensitive and promising detection method, photoelectrochemical (PEC) sensor has been widely used in biochemical analysis field. However, the interferences from environment, especially dissolved oxygen, often impact the stability and precision of PEC sensors, which limit its practical applications. Here, we report a dissolved oxygen insensitive PEC sensor based on a proposed indirect electron transfer model. Through the detailed study of the charge transfer process, we determined that the photocurrent mainly comes from the electrochemical reaction between the photochemical products and the electrode, rather than direct charge transfer between the photoelectric materials and the electrode. The newly designed PEC sensor used ferricyanide to shield oxygen reduction and eliminated the influence from variable oxygen solubility. This sensor maintained robust responses over an extremely wide range (1.0-7.5 mg/L) of dissolved oxygen concentrations. To further demonstrate its capability, a smartphone based portable immunosensor was constructed for the detection of human serum albumin (HSA), which exhibited excellent stability and accuracy. The relative error of current was reduced by 81.3% over traditional electron donor solution. This work effectively improves the stability of PEC sensors, and lays the foundation for the subsequently practical applications of PEC sensor in point-of-care testing.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ferricianetos , Humanos , Imunoensaio , Limite de Detecção , Oxigênio , Testes Imediatos
12.
Biosens Bioelectron ; 193: 113572, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425518

RESUMO

Photoelectrochemical analysis has been widely used in the field of biosensing due to its high sensitivity and strong anti-interference ability. Herein, a portable and versatile smartphone-based photoelectrochemical biosensing platform was developed for the rapid and on-site biomedical analysis. In the system, light excitation and photocurrent measurements were accomplished by a miniaturized and integrated circuit board. Smartphone with a specifically designed application was utilized to wirelessly control the system via Bluetooth. For photoelectrochemical sensor, graphitic carbon nitride (g-C3N4) and gold nanoparticles loaded on indium tin oxide electrodes were utilized as photoactive materials and signal amplification elements, respectively. The gold nanoparticles were also used to immobilized matrix metalloproteinase-2 (MMP-2) specific cleavage peptide that modified with bovine serum albumin (BSA) on the terminal. In the presence of MMP-2, the peptide was specifically hydrolyzed and cleaved. Thus, parts of the peptide chain and BSA were detached from the electrode resulting in the decrease of steric hindrance and the increase of photoelectrochemical currents. The photocurrents changed linearly with the logarithm of MMP-2 concentrations ranging from 1 pg/mL to 100 ng/mL in both buffer and artificial serum with correlation coefficient of 0.9943 and 0.9698. The limit of detections were as low as 0.48 pg/mL in buffer and 0.55 pg/mL in artifical serum. It indicated that the biosensor has good linearity and high sensitivity, which also verified the effectiveness of the portable instrument. This system provides a pioneering solution for the development of miniaturized and portable photoelectrochemical analysis instruments used for the field monitoring of different analytes.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Eletroquímicas , Eletrodos , Ouro , Grafite , Limite de Detecção , Metaloproteinase 2 da Matriz , Compostos de Nitrogênio , Smartphone
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa