Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
FASEB J ; 36(2): e22123, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34972242

RESUMO

GABA is a major neurotransmitter in the mammalian central nervous system. Glutamate decarboxylase (GAD) synthesizes GABA from glutamate, and two isoforms of GAD, GAD65, and GAD67, are separately encoded by the Gad2 and Gad1 genes, respectively. The phenotypes differ in severity between GAD single isoform-deficient mice and rats. For example, GAD67 deficiency causes cleft palate and/or omphalocele in mice but not in rats. In this study, to further investigate the functional roles of GAD65 and/or GAD67 and to determine the contribution of these isoforms to GABA synthesis during development, we generated various kinds of GAD isoform(s)-deficient rats and characterized their phenotypes. The age of death was different among Gad mutant rat genotypes. In particular, all Gad1-/- ; Gad2-/- rats died at postnatal day 0 and showed little alveolar space in their lungs, suggesting that the cause of their death was respiratory failure. All Gad1-/- ; Gad2-/- rats and 18% of Gad1-/- ; Gad2+/- rats showed cleft palate. In contrast, none of the Gad mutant rats including Gad1-/- ; Gad2-/- rats, showed omphalocele. These results suggest that both rat GAD65 and GAD67 are involved in palate formation, while neither isoform is critical for abdominal wall formation. The GABA content in Gad1-/- ; Gad2-/- rat forebrains and retinas at embryonic day 20 was extremely low, indicating that almost all GABA was synthesized from glutamate by GADs in the perinatal period. The present study shows that Gad mutant rats are a good model for further defining the role of GABA during development.


Assuntos
Glutamato Descarboxilase/deficiência , Palato/embriologia , Prosencéfalo/embriologia , Retina/embriologia , Animais , Glutamato Descarboxilase/metabolismo , Ratos , Ratos Mutantes
2.
BMC Geriatr ; 23(1): 157, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944957

RESUMO

BACKGROUND: Frailty is a state of increased vulnerability to poor resolution of homeostasis following a stress. Early diagnosis and intervention of frailty are essential to prevent its adverse outcomes. However, simple diagnostic criteria have not been established. The Questionnaire for Medical Checkup of Old-Old (QMCOO) is widely used for medical checkups of older adults in Japan. In our previous report, we developed a method to score the QMCOO and showed that frailty can be diagnosed with the highest accuracy when the score cutoff was set at 3/4 points. We aimed to validate the criteria in a larger cohort. METHODS: Participants aged 65 years or over were recruited in the western region of Japan. They answered all the items of the Kihon Checklist (KCL) and the QMCOO. Based on the KCL score, they were diagnosed as robust (3 or lower), prefrail (4 to 7), or frail (8 or over). Then we tested the effectiveness to diagnose frailty using the QMCOO cutoff of 3/4 points. We also aimed to determine the score cutoff to separate robust and prefrail. RESULTS: 7,605 participants (3,458 males and 4,147 females, age 77.4 ± 6.9 years) were recruited. 3,665 participants were diagnosed as robust, 2,448 were prefrail, and 1,492 were frail based on the KCL score. The diagnosis of frailty had a sensitivity of 84.0%, specificity of 82.5%, and accuracy of 82.8% with a QMCOO score cutoff of 3/4 points, suggesting its validity. To separate robust and prefrail, both the accuracy and the Youden index were the highest with the QMCOO cutoff of 2/3 points (sensitivity, specificity, and accuracy were 63.9%, 83.4%, and 75.6%, respectively). All the questions of the QMCOO except Q12 (about smoking) were significantly related to prefrailty status after a logistic regression analysis. CONCLUSION: Diagnosis of frailty using the QMCOO score cutoff of 3/4 points was validated. Prefrailty could be diagnosed using the score cutoff of 2/3 points.


Assuntos
Fragilidade , Masculino , Feminino , Humanos , Idoso , Fragilidade/diagnóstico , Fragilidade/epidemiologia , Vida Independente , Inquéritos e Questionários , Exame Físico , Lista de Checagem/métodos , Idoso Fragilizado , Avaliação Geriátrica/métodos
3.
Biol Pharm Bull ; 44(2): 181-187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33518671

RESUMO

Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into oligodendrocytes and myelinate axons. The number of OPCs is reportedly increased in brain lesions in some demyelinating diseases and during ischemia; however, these cells also secrete cytokines and elicit both protective and deleterious effects in response to brain injury. The mechanism regulating the behaviors of OPCs in physiological and pathological conditions must be elucidated to control these cells and to treat demyelinating diseases. Here, we focused on transient receptor potential melastatin 3 (TRPM3), a Ca2+-permeable channel that is activated by the neurosteroid pregnenolone sulfate (PS) and body temperature. Trpm3+/Pdgfra+ OPCs were detected in the cerebral cortex (CTX) and corpus callosum (CC) of P4 and adult rats by in situ hybridization. Trpm3 expression was detected in primary cultured rat OPCs and was increased by treatment with tumor necrosis factor α (TNFα). Application of PS (30-100 µM) increased the Ca2+ concentration in OPCs and this effect was inhibited by co-treatment with the TRP channel blocker Gd3+ (100 µM) or the TRPM3 inhibitor isosakuranetin (10 µM). Stimulation of TRPM3 with PS (50 µM) did not affect the differentiation or migration of OPCs. The number of Trpm3+ OPCs was markedly increased in demyelinated lesions in an endothelin-1 (ET-1)-induced ischemic rat model. In conclusion, TRPM3 is functionally expressed in OPCs in vivo and in vitro and is upregulated in inflammatory conditions such as ischemic insults and TNFα treatment, implying that TRPM3 is involved in the regulation of specific behaviors of OPCs in pathological conditions.


Assuntos
Córtex Cerebral/patologia , Doenças Desmielinizantes/patologia , Células Precursoras de Oligodendrócitos/patologia , Acidente Vascular Cerebral Lacunar/patologia , Canais de Cátion TRPM/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Corpo Caloso/irrigação sanguínea , Corpo Caloso/citologia , Corpo Caloso/patologia , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Humanos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Pregnenolona/farmacologia , Cultura Primária de Células , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Acidente Vascular Cerebral Lacunar/complicações , Canais de Cátion TRPM/agonistas , Regulação para Cima
4.
J Neurosci ; 39(32): 6339-6353, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31201232

RESUMO

ADP-ribosylation factors (ARFs) are a family of small monomeric GTPases comprising six members categorized into three classes: class I (ARF1, 2, and 3), class II (ARF4 and 5), and class III (ARF6). In contrast to class I and III ARFs, which are the key regulators in vesicular membrane trafficking, the cellular function of class II ARFs remains unclear. In the present study, we generated class II ARF-deficient mice and found that ARF4+/-/ARF5-/- mice exhibited essential tremor (ET)-like behaviors. In vivo electrophysiological recordings revealed that ARF4+/-/ARF5-/- mice of both sexes exhibited abnormal brain activity when moving, raising the possibility of abnormal cerebellar excitability. Slice patch-clamp experiments demonstrated the reduced excitability of the cerebellar Purkinje cells (PCs) in ARF4+/-/ARF5-/- mice. Immunohistochemical and electrophysiological analyses revealed a severe and selective decrease of pore-forming voltage-dependent Na+ channel subunit Nav1.6, important for maintaining repetitive action potential firing, in the axon initial segment (AIS) of PCs. Importantly, this decrease in Nav1.6 protein localized in the AIS and the consequent tremors in ARF4+/-/ARF5-/- mice could be alleviated by the PC-specific expression of ARF5 using adeno-associated virus vectors. Together, our data demonstrate that the decreased expression of the class II ARF proteins in ARF4+/-/ARF5-/- mice, leading to a haploinsufficiency of ARF4 in the absence of ARF5, impairs the localization of Nav1.6 to the AIS and hence reduces the membrane excitability in PCs, resulting in the ET-like movement disorder. We suggest that class II ARFs function in localizing specific proteins, such as Nav1.6, to the AIS.SIGNIFICANCE STATEMENT We found that decreasing the expression of class II ARF proteins, through the generation of ARF4+/-/ARF5-/- mice, impairs Nav1.6 distribution to the axon initial segment (AIS) of cerebellar Purkinje cells (PCs), thereby resulting in the impairment of action potential firing of PCs. The ARF4+/-/ARF5-/- mutant mice exhibited movement-associated essential tremor (ET)-like behavior with pharmacological profiles similar to those in ET patients. The exogenous expression of ARF5 reduced the tremor phenotype and restored the localization of Nav1.6 immunoreactivity to the AIS in ARF4+/-/ARF5-/- mice. Thus, our results suggest that class II ARFs are involved in the localization of Nav1.6 to the AISs in cerebellar PCs and that the reduction of class II ARF activity leads to ET-like movement disorder.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Axônios/metabolismo , Transtornos dos Movimentos/etiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Células de Purkinje/metabolismo , Tremor/etiologia , Fatores de Ribosilação do ADP/deficiência , Fatores de Ribosilação do ADP/genética , Potenciais de Ação , Animais , Dependovirus/genética , Eletroencefalografia , Eletromiografia , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Genótipo , Movimentos da Cabeça , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.6/deficiência , Técnicas de Patch-Clamp , Transporte Proteico , Células de Purkinje/fisiologia , Teste de Desempenho do Rota-Rod , Método Simples-Cego , Tremor/metabolismo , Tremor/fisiopatologia
5.
Lab Invest ; 100(2): 218-223, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896814

RESUMO

Body temperature is an important determinant in regulating the activities of animals. In humans, a mild 0.5 °C hyperthermia can cause headaches, demonstrating that the maintenance of normal body temperature is a key for our health. In a more extreme example, accidental acute hypothermia can lead to severe shivering, loss of consciousness, or death, although the details of these mechanisms are poorly understood. We previously found that the TRPV4 ion channel is constitutively activated by normal body temperature. The activation threshold of TRPV4 is >34 °C in the brain, which enables TRPV4 to convert thermal information into cellular signaling. Here we review the data which describe how the deletion of TRPV4 evokes abnormal behavior in mice. These studies demonstrate that the maintenance of body temperature and the sensory system for detecting body temperature, such as via TRPV4, are critical components for normal cellular function. Moreover, abnormal TRPV4 activation exacerbates cell death, epilepsy, stroke, brain edema, or cardiac fibroblast activity. In this review, we also summarize the findings related to TRPV4 and disease.


Assuntos
Temperatura Corporal/fisiologia , Progressão da Doença , Canais de Cátion TRPV , Animais , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Hipotermia/fisiopatologia , Camundongos
6.
Lab Invest ; 100(2): 297-310, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844148

RESUMO

The TRPC5 ion channel is activated upon depletion of intracellular calcium stores, as well as by various stimuli such as nitric oxide (NO), membrane stretch, and cold temperatures. TRPC5 is abundantly expressed in the central nervous system where it has important neuronal functions. In the chick retina, TRPC5 expression was shown to be restricted to amacrine cells (ACs) and Müller glial cells, although its expression was also observed in the ganglion cell layer (GCL) in displaced ACs, as determined by their characteristic cell morphology. However, it is possible that this expression analysis alone might be insufficient to fully understand the expression of TRPC5 in retinal ganglion cells (RGCs). Hence, we analyzed TRPC5 expression by in situ hybridization and immunostaining in the developing mouse retina, and for the first time identified that developing and mature RGCs strongly express TRPC5. The expression begins at E14.5, and is restricted to ACs and RGCs. It was reported that TRPC5 negatively regulates axonal outgrowth in hippocampal neurons. We thus hypothesized that TRPC5 might have similar functions in RGCs since they extend very long axons toward the brain, and this characteristic significantly differs from other retinal cell types. To elucidate its possible involvement in axonal outgrowth, we inhibited TRPC5 activity in developing RGCs which significantly increased RGC axon length. In contrast, overexpression of TRPC5 inhibited axonal outgrowth in developing RGCs. These results indicate that TRPC5 is an important negative regulator of RGC axonal outgrowth. Since TRPC5 is a mechanosensor, it might function to sense abnormal intraocular pressure changes, and could contribute to the death of RGCs in diseases such as glaucoma. In this case, excessive Ca2+ entry through TRPC5 might induce dendritic and axonal remodeling, which could lead to cell death, as our findings clearly indicate that TRPC5 is an important regulator of neurite remodeling.


Assuntos
Axônios/metabolismo , Retina/metabolismo , Células Ganglionares da Retina , Canais de Cátion TRPC , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Cálcio/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Canais de Cátion TRPC/análise , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
7.
Lab Invest ; 100(2): 274-284, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31641226

RESUMO

Physiological brain temperature is an important determinant of brain function, and it is well established that changes in brain temperature dynamically influence hippocampal neuronal activity. We previously demonstrated that the thermosensor TRPV4 is activated at physiological brain temperature in hippocampal neurons thereby controlling neuronal excitability in vitro. Here, we examined whether TRPV4 regulates neuronal excitability through its activation by brain temperature in vivo. We locally cooled the hippocampus using our novel electrical device and demonstrated constitutive TRPV4 activation in normal mouse brain. We generated a model of partial epilepsy by utilizing kindling stimuli in the ventral hippocampus of wild type (WT) or TRPV4-deficient (TRPV4KO) mice and obtained electroencephalograms (EEG). The frequencies of epileptic EEG in WT mice were significantly larger than those in TRPV4KO mice. These results indicate that TRPV4 activation is involved in disease progression of epilepsy. We expected that disease progression would enhance hyperexcitability and lead to hyperthermia in the epileptogenic foci. To confirm this hypothesis, we developed a new device to measure exact brain temperature only in a restricted local area. From the recording results by the new device, we found that the brain temperatures in epileptogenic zones were dramatically elevated compared with normal regions. Furthermore, we demonstrated that the temperature elevation was critical for disease progression. Based on these results, we speculate that brain cooling treatment at epileptogenic foci would effectively suppress epileptic discharges through inhibition of TRPV4. Notably, the cooling treatment drastically suppressed neuronal discharges dependent on the inactivation of TRPV4.


Assuntos
Temperatura Corporal/fisiologia , Epilepsia , Febre , Canais de Cátion TRPV , Animais , Giro Denteado/metabolismo , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Febre/metabolismo , Febre/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
8.
Biochem Biophys Res Commun ; 529(3): 590-595, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736678

RESUMO

Intracerebral hemorrhage (ICH) is one of the most severe subtypes of stroke with high morbidity and mortality. Although a lot of drug discovery studies have been conducted, the drugs with satisfactory therapeutic effects for motor paralysis after ICH have yet to reach clinical application. Transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable cation channel and activated by hypoosmolarity and warm temperature, is expressed in various cell types. The present study investigated whether TRPV4 would participate in the brain damage in a mouse model of ICH. ICH was induced by intrastriatal treatment of collagenase. Administration of GSK1016790A, a selective TRPV4 agonist, attenuated neurological and motor deficits. The inhibitory effects of the TRPV4 agonist in collagenase-injected WT mice were completely disappeared in TRPV4-KO mice. The TRPV4 agonist did not alter brain injury volume and brain edema at 1 and 3 days after ICH induction. The TRPV4 agonist did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 3 days after ICH induction. Quantitative RT-PCR experiments revealed that the TRPV4 agonist significantly upregulated the expression level of c-fos, a marker of neuronal activity, while the agonist gave no effects on the expression level of cytokines/chemokines at 1 day after ICH induction, These results suggest that stimulation of TRPV4 would ameliorate ICH-induced brain injury, presumably by increased neuronal activity and TRPV4 provides a novel therapeutic target for the treatment for ICH.


Assuntos
Hemorragia Cerebral/complicações , Leucina/análogos & derivados , Transtornos Motores/prevenção & controle , Doenças do Sistema Nervoso/prevenção & controle , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Hemorragia Cerebral/induzido quimicamente , Colagenases , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Leucina/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos Motores/etiologia , Doenças do Sistema Nervoso/etiologia , Proteínas Proto-Oncogênicas c-fos/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
9.
J Neurosci ; 38(25): 5700-5709, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29793978

RESUMO

Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia.SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia.


Assuntos
Edema Encefálico/etiologia , Isquemia Encefálica/complicações , Febre/etiologia , Canais de Cátion TRPV/metabolismo , Animais , Edema Encefálico/metabolismo , Isquemia Encefálica/metabolismo , Febre/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
J Neurosci ; 38(41): 8745-8758, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143574

RESUMO

Using region-specific injection of hyaluronic acid, we developed a mouse model of acute retinal detachment (RD) to investigate molecular mechanisms of photoreceptor cell death triggered by RD. We focused on the transient receptor potential vanilloid 4 (TRPV4) ion channel, which functions as a thermosensor, osmosensor, and/or mechanosensor. After RD, the number of apoptotic photoreceptors was reduced by ∼50% in TRPV4KO mice relative to wild-type mice, indicating the possible involvement of TRPV4 activation in RD-induced photoreceptor cell death. Furthermore, TRPV4 expressed in Müller glial cells can be activated by mechanical stimuli caused by RD-induced swelling of these cells, resulting in release of the cytokine MCP-1, which is reported as a mediator of Müller glia-derived strong mediator for RD-induced photoreceptor death. We also found that the TRPV4 activation by the Müller glial swelling was potentiated by body temperature. Together, our results suggest that RD adversely impacts photoreceptor viability via TRPV4-dependent cytokine release from Müller glial cells and that TRPV4 is part of a novel molecular pathway that could exacerbate the effects of hypoxia on photoreceptor survival after RD.SIGNIFICANCE STATEMENT Identification of the mechanisms of photoreceptor death in retinal detachment is required for establishment of therapeutic targets for preventing loss of visual acuity. In this study, we found that TRPV4 expressed in Müller glial cells can be activated by mechanical stimuli caused by RD-induced swelling of these cells, resulting in release of the cytokine MCP-1, which is reported as a mediator of Müller glia-derived strong mediator for RD-induced photoreceptor death. We also found that the TRPV4 activation by the Müller glial swelling was potentiated by body temperature. Hence, TRPV4 inhibition could suppress cell death in RD pathological conditions and suggests that TRPV4 in Müller glial cells might be a novel therapeutic target for preventing photoreceptor cell death after RD.


Assuntos
Células Ependimogliais/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Descolamento Retiniano/fisiopatologia , Canais de Cátion TRPV/fisiologia , Animais , Apoptose , Temperatura Corporal , Células Cultivadas , Modelos Animais de Doenças , Células Ependimogliais/patologia , Feminino , Ácido Hialurônico/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Fotorreceptoras de Vertebrados/patologia , Estimulação Física , Descolamento Retiniano/induzido quimicamente , Descolamento Retiniano/patologia , Canais de Cátion TRPV/genética
11.
BMC Geriatr ; 19(1): 211, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382881

RESUMO

BACKGROUND: Female sex is an important factor predisposing individuals to frailty. Appropriate nutrition is one of the most effective ways to prevent older adults from developing frailty; Sex-related differences have also been detected in the association between nutritional intervention and health-related outcomes. However, few studies have discussed these sex-related differences. The aim of the present study was to investigate the sex-related differences in the association between frailty and dietary consumption. METHODS: We conducted a cross-sectional study which investigated community-dwelling older adults aged ≥65 years. We surveyed age, sex, body mass index, family arrangement (living alone, living with a partner or living with parent(s) and/or child (ren)), dietary consumption and frailty status. Dietary consumption was surveyed using a food frequency questionnaire that included 13 major food categories (fish, meat, eggs, dairy products, soybean products, vegetables, seaweeds, potatoes, fruits, fats or oils, snacks, salty foods and alcohol). Frailty was defined by the Kihon Checklist score. The Kihon Checklist is composed of 25 simple yes/no questions, and it has been validated as a metric for frailty. A higher score indicates a greater degree of frailty. Multinomial regression analysis was performed to clarify the association between frailty and dietary consumption for each sex. RESULTS: We analyzed 905 older adults (420 (46.4%) were male). After adjusting for cofounders, a low frequency of meat consumption (less than twice/week) was associated with a high prevalence of frailty in men (odds ratio: 2.76 (95%CI: 1.12-6.77), p = 0.027). In contrast, in women, low frequencies of consumption of fish, meat, vegetables, potatoes and snacks were associated with a higher prevalence of frailty compared with those who consumed foods from those categories daily (odds ratios: fish 2.45 (1.02-5.89), p = 0.045; meat 4.05 (1.67-9.86), p = 0.002; vegetables 5.03 (2.13-11.92), p < 0.001; potatoes 3.84 (1.63-9.05), p = 0.002; snacks 2.16 (1.02-4.56), p = 0.043). CONCLUSIONS: More food categories were associated with frailty in women than in men. Nutritional intervention to prevent frailty is presumably more effective for women than for men.


Assuntos
Comportamento Alimentar/fisiologia , Fragilidade/dietoterapia , Fragilidade/epidemiologia , Caracteres Sexuais , Inquéritos e Questionários , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Estudos Transversais , Laticínios , Feminino , Fragilidade/fisiopatologia , Frutas , Humanos , Japão/epidemiologia , Masculino , Estado Nutricional/fisiologia , Verduras
12.
Pflugers Arch ; 470(5): 705-716, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29569183

RESUMO

Oligodendrocytes, which differentiate from oligodendrocyte precursor cells (OPCs), ensheath axons with myelin, play an essential role in rapid conduction of action potentials and metabolically support neurons. Elucidation of the mechanisms underlying the proliferation, migration, differentiation, and survival of OPCs is considered indispensable for determining the causes of central nervous system diseases. However, the relationship between these functions of OPCs and their intracellular Ca2+ signaling has not been fully elucidated. Here, we investigated the function of transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable channel that responds to hypo-osmolarity, mild temperature, mechanical stimulation, and endogenous arachidonic acid metabolites, in OPCs. Trpv4 mRNA was detected in OPCs in vivo and in primary cultured rat OPCs. In Ca2+ imaging experiments, treatment with the selective TRPV4 agonist GSK1016790A induced sustained elevation of the intracellular Ca2+ concentration in OPCs in a concentration-dependent manner, which was almost completely suppressed by co-treatment with the selective TRPV4 antagonist HC067047. Stimulation of TRPV4 by GSK1016790A augmented OPC proliferation, which was abolished by co-treatment with HC067047, the intracellular Ca2+ chelator BAPTA-AM, and the protein kinase C inhibitor bisindolylmaleimide II. By contrast, GSK1016790A did not significantly affect the migration or differentiation of OPCs. Taken together, these results suggest that TRPV4 is functionally expressed in OPCs and increases the proliferation of these cells without affecting their ability to differentiate into oligodendrocytes.


Assuntos
Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células-Tronco Neurais/fisiologia , Oligodendroglia/fisiologia , Ratos , Ratos Wistar , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética
13.
Biochem Biophys Res Commun ; 496(2): 588-593, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29353044

RESUMO

We previously reported that BMP4 does not promote proliferation or differentiation of CD44-positive astrocyte precursor cells (APCs) but greatly promotes their survival in the presence of fibroblast growth factor-2 (FGF-2). In this study, we examined if BMP4 acts as a survival factor also for neural stem/progenitor cells (NPCs) isolated from ganglionic eminence of neonatal mouse brain. We found BMP4 promotes survival but not proliferation or differentiation of these cells, just as in the case for CD44-positive APCs. Microarray analysis revealed some candidate molecules in the signaling pathway downstream of BMP4. Among them, we focused on Id1 (inhibitor of DNA-binding 1) and Bcl-xL in this study. Expression of both genes was promoted in the presence of BMP4, and this promotion was reduced by dorsomorphin, an inhibitor of BMP4 signaling. Furthermore, cytochrome c release from mitochondria was significantly reduced in the presence of BMP4, suggesting up-regulation of Bcl-xL activity by BMP4. Id1 siRNA reduced the expression of Bcl-xL, and negated survival promoting effect of BMP4. These data suggest that BMP4 promotes survival of NPCs by enhancing the anti-apoptotic function of Bcl-xL via BMP4-Smad1/5/8-Id1 signaling.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Proteína bcl-X/metabolismo , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Regulação para Cima , Proteína bcl-X/genética
14.
Biochem Biophys Res Commun ; 495(1): 935-940, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175331

RESUMO

Cold-inducible RNA-binding protein (CIRP), RNA-binding motif protein 3 (RBM3) and serine and arginine rich splicing factor 5 (SRSF5) are RNA-binding proteins that are transcriptionally upregulated in response to moderately low temperatures and a variety of cellular stresses in mammalian cells. Induction of these cold-inducible proteins (CIPs) is dependent on transient receptor potential (TRP) V4 channel protein, but seems independent of its ion channel activity. We herein report that in addition to TRPV4, TRPV3 and TRPM8 are necessary for the induction of CIPs. We established cell lines from the lung of TRPV4-knockout (KO) mouse, and observed induction of CIPs in them by western blot analysis. A TRPV4 antagonist RN1734 suppressed the induction in wild-type mouse cells, but not in TRPV4-KO cells. A TRPV3 channel blocker S408271 and a TRPM8 channel blocker AMTB as well as siRNAs against TRPV3 and TRPM8 suppressed the CIP induction in mouse TRPV4-KO cells and human U-2 OS cells. A TRPV3 channel agonist 2-APB induced CIP expression, but camphor did not. Neither did a TRPM8 channel agonist WS-12. These results suggest that TRPV4, TRPV3 and TRPM8 proteins, but not their ion channel activities are necessary for the induction of CIPs at 32 °C. Identification of proteins that differentially interact with these TRP channels at 37 °C and 32 °C would help elucidate the underlying mechanisms of CIP induction by hypothermia.


Assuntos
Proteínas e Peptídeos de Choque Frio/metabolismo , Resposta ao Choque Frio/fisiologia , Ativação do Canal Iônico/fisiologia , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Linhagem Celular , Temperatura Baixa , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Dev Neurosci ; 40(1): 54-63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29393205

RESUMO

Neuroblasts derived from neural stem cells (NSCs) in the subventricular zone (SVZ) migrate along the rostral migratory stream into the olfactory bulb to generate interneurons under normal physiological conditions. When demyelination occurs, NSCs or neural progenitor cells (NPCs) in the SVZ provide newly formed oligodendrocytes to demyelinated lesions. The plasticity of NSC/NPC lineages may tend to oligodendrogenesis under the influence of demyelinated lesions. The mechanisms, however, still remain unknown. This study revealed that focal demyelination in the corpus callosum caused activation of the microglia, not only at the site of demyelination but also in the SVZ, and dramatically increased the generation of oligodendrocyte progenitor cells (OPCs) in the SVZ. Furthermore, the inhibition of microglial activation by minocycline treatment decreased OPC generation in the SVZ, suggesting that microglial activation in the SVZ, induced by the focal demyelination in the corpus callosum, regulates NSC/NPC lineage plasticity in situ. In contrast to the findings regarding demyelination in the corpus callosum, inducing focal demyelination in the internal capsule did not induce either microglial activation or OPC generation in the SVZ. These results suggest that the mechanism of OPC generation in the SVZ after inducing demyelinating lesions could be different across the demyelinated regions.


Assuntos
Ventrículos Laterais/citologia , Microglia/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Oligodendroglia/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Corpo Caloso/patologia , Doenças Desmielinizantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR
16.
FASEB J ; 31(4): 1368-1381, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28007781

RESUMO

We have previously reported that transient receptor potential vanilloid 2 (TRPV2) can be activated by mechanical stimulation, which enhances axonal outgrowth in developing neurons; however, the molecular mechanisms that govern the contribution of TRPV2 activation to axonal outgrowth remain unclear. In the present study, we examined this mechanism by using PC12 cells as a neuronal model. Overexpression of TRPV2 enhanced axonal outgrowth in a mechanical stimulus-dependent manner. Accumulation of TRPV2 at the cell surface was 4-fold greater in the growth cone compared with the soma. In the growth cone, TRPV2 is not static, but dynamically accumulates (within ∼100 ms) to the site of mechanical stimulation. The dynamic and acute clustering of TRPV2 can enhance very weak mechanical stimuli via focal accumulation of TRPV2. Focal application of mechanical stimuli dramatically increased growth cone motility and caused actin reorganization via activation of TRPV2. We also found that TRPV2 physically interacts with actin and that changes in the actin cytoskeleton are required for its activation. Here, we demonstrated for the first time to our knowledge that TRPV2 clustering is induced by mechanical stimulation generated by axonal outgrowth and that TRPV2 activation is triggered by actin rearrangements that result from mechanical stimulation. Moreover, TRPV2 activation enhances growth cone motility and actin accumulation to promote axonal outgrowth. Sugio, S., Nagasawa, M., Kojima, I., Ishizaki, Y., Shibasaki, K. Transient receptor potential vanilloid 2 activation by focal mechanical stimulation requires interaction with the actin cytoskeleton and enhances growth cone motility.


Assuntos
Citoesqueleto de Actina/metabolismo , Cones de Crescimento/metabolismo , Crescimento Neuronal , Canais de Cátion TRPV/metabolismo , Animais , Mecanotransdução Celular , Células PC12 , Ligação Proteica , Ratos , Canais de Cátion TRPV/genética
17.
Neurochem Res ; 43(1): 205-211, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28988404

RESUMO

During central nervous development, multi-potent neural stem/progenitor cells located in the ventricular/subventricular zones are temporally regulated to mostly produce neurons during early developmental stages and to produce glia during later developmental stages. After birth, the rodent cerebellum undergoes further dramatic development. It is also known that neural stem/progenitor cells are present in the white matter (WM) of the postnatal cerebellum until around P10, although the fate of these cells has yet to be determined. In the present study, it was revealed that primary neurospheres generated from cerebellar neural stem/progenitor cells at postnatal day 3 (P3) mainly differentiated into astrocytes and oligodendrocytes. In contrast, primary neurospheres generated from cerebellar neural stem/progenitor cells at P8 almost exclusively differentiated into astrocytes, but not oligodendrocytes. These results suggest that the differentiation potential of primary neurospheres changes depending on the timing of neural stem/progenitor cell isolation from the cerebellum. To identify the candidate transcription factors involved in regulating this temporal change, we utilized DNA microarray analysis to compare global gene-expression profiles of primary neurospheres generated from neural stem/progenitor cells isolated from either P3 or P8 cerebellum. The expression of zfp711, zfp618, barx1 and hoxb3 was higher in neurospheres generated from P3 cerebellum than from P8 by real-time quantitative PCR. Several precursor cells were found to express zfp618, barx1 or hoxb3 in the WM of the cerebellum at P3, but these transcription factors were absent from the WM of the P8 cerebellum.


Assuntos
Diferenciação Celular/fisiologia , Cerebelo/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco Neurais/citologia , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Linhagem da Célula/fisiologia , Células Cultivadas , Camundongos , Neuroglia/citologia , Neurônios/citologia , Oligodendroglia/citologia
18.
Nihon Ronen Igakkai Zasshi ; 55(1): 136-142, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-29503357

RESUMO

We report the case of an 82-year-old woman who developed pneumothorax during treatment for nontuberculous mycobacterium (NTM). In year X, she was diagnosed with NTM at another hospital after abnormalities were pointed out on a chest X-ray. She received no treatment for NTM at that time. Antibiotic treatment was introduced at the department of respiratory medicine in our hospital in year X+15. The regimen was composed of clarithromycin (800 mg/day), ethambutol (750 mg/day) and rifampicin (600 mg/day); however, treatment with the three-drug antibiotic regimen was canceled at her request and changed to erythromycin. She was then referred to our department. However, right-side cavity wall thickening was detected on chest CT in year X+17.We resumed clarithromycin (600 mg/day), ethambutol (750 mg/day) and rifampicin (450 mg/day). On the 43rd day after treatment with three types of antibiotics, she felt dyspnea and she was admitted to the hospital and was diagnosed with right-side pneumothorax. The pneumothorax was thought to have been caused by a break in the adhesion of the cavity wall. The visceral pleura was weakened by the exacerbation of NTM and the thickness of the cavity wall was improved after the resumption of antibiotic therapy. This report is considered to be an important case in which pneumothorax developed as a complication in an elderly patient during treatment for NTM.


Assuntos
Antibacterianos/efeitos adversos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Micobactérias não Tuberculosas/efeitos dos fármacos , Pneumotórax/induzido quimicamente , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos
19.
J Physiol ; 595(20): 6499-6516, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28766743

RESUMO

KEY POINTS: Retinal cells use vanilloid transient receptor potential (TRP) channels to integrate light-evoked signals with ambient mechanical, chemical and temperature information. Localization and function of the polymodal non-selective cation channel TRPV1 (transient receptor potential vanilloid isoform 1) remains elusive. TRPV1 is expressed in a subset of mouse retinal ganglion cells (RGCs) with peak expression in the mid-peripheral retina. Endocannabinoids directly activate TRPV1 and inhibit it through cannabinoid type 1 receptors (CB1Rs) and cAMP pathways. Activity-dependent endocannabinoid release may modulate signal gain in RGCs through simultaneous manipulation of calcium and cAMP signals mediated by TRPV1 and CB1R. ABSTRACT: How retinal ganglion cells (RGCs) process and integrate synaptic, mechanical, swelling stimuli with light inputs is an area of intense debate. The nociceptive cation channel TRPV1 (transient receptor potential vanilloid type 1) modulates RGC Ca2+ signals and excitability yet the proportion of RGCs that express it remains unclear. Furthermore, TRPV1's response to endocannabinoids (eCBs), the putative endogenous retinal activators, is unknown, as is the potential modulation by cannabinoid receptors (CBRs). The density of TRPV1-expressing RGCs in the Ai9:Trpv1 reporter mouse peaked in the mid-peripheral retina. TRPV1 agonists including capsaicin (CAP) and the eCBs anandamide and N-arachidonoyl-dopamine elevated [Ca2+ ]i in 30-40% of wild-type RGCs, with effects suppressed by TRPV1 antagonists capsazepine (CPZ) and BCTC ((4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide), and lacking in Trpv1-/- cells. The cannabinoid receptor type 1 (CB1R) colocalized with TRPV1:tdTomato expression. Its agonists 2-arachidonoylglycerol (2-AG) and WIN55,122 inhibited CAP-induced [Ca2+ ]i signals in adult, but not early postnatal, RGCs. The suppressive effect of 2-AG on TRPV1 activation was emulated by positive modulators of the protein kinase A (PKA) pathway, inhibited by the CB1R antagonist rimonabant and Gi uncoupler pertussis toxin, and absent in Cnr1-/- RGCs. We conclude that TRPV1 is a modulator of Ca2+ homeostasis in a subset of RGCs that show non-uniform distribution across the mouse retina. Non-retrograde eCB-mediated modulation of RGC signalling involves a dynamic push-pull between direct TRPV1 activation and PKA-dependent regulation of channel inactivation, with potential functions in setting the bandwidth of postsynaptic responses, sensitivity to mechanical/excitotoxic stress and neuroprotection.


Assuntos
Receptor CB1 de Canabinoide/fisiologia , Células Ganglionares da Retina/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
20.
J Neurochem ; 140(3): 395-403, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27419919

RESUMO

It was previously reported that functional glycine receptors were expressed in neonatal prefrontal cortex; however, the glycine-releasing cells were unknown. We hypothesized that astrocytes might be a major glycine source, and examined the glycine release properties of astrocytes. We also hypothesized that dopamine (DA) might be a trigger for the astrocytic glycine release, as numerous DA terminals localize in the cortex. We combined two different methods to confirm the glycine release from astrocytes. Firstly, we analyzed the supernatant of astrocytes by amino acid analyzer after DA stimulation, and detect significant glycine peak. Furthermore, we utilized a patch-clamp biosensor method to confirm the glycine release from astrocytes by using GlyRα1 and Glyß-expressing HEK293T cells, and detected significant glycine-evoked current upon DA stimulation. Thus, we clearly demonstrated that DA induces glycine release from astrocytes. Surprisingly, DA caused a functional reversal of astrocytic glycine transporter 1, an astrocytic type of glycine transporter, causing astrocytes to release glycine. Hence, astrocytes transduce pre-synaptic DA signals to glycine signals through a reversal of astrocytic glycine transporter 1 to regulate neuronal excitability. Cover Image for this issue: doi: 10.1111/jnc.13785.


Assuntos
Astrócitos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Glicina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa