Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38837810

RESUMO

The most effective drug, doxorubicin (DOX), is widely used worldwide for clinical application as an anticancer drug. DOX-induced cytotoxicity is characterized by mitochondrial dysfunction. There is no alternative treatment against DOX-induced cardiac damage despite intensive research in the present decades. Ohwia caudata has emerged as a potential herbal remedy that prevents from DOX-induced cytotoxicity owing to its pharmacological action of sustaining mitochondrial dynamics by attenuating oxidative stress and inducing cellular longevity. However, its underlying mechanisms are unknown. The novel treatment provided here depends on new evidence from DOX-treated H9c2 cells, which significantly enhanced insulin-like growth factor (IGF) II receptor (IGF-IIR) pathways that activated calcineurin and phosphorylated dynamin-related protein 1 (p-Drp1) at ser616 (p-Drp1[ser616]); cells undergo apoptosis due to these factors, which translocate to mitochondria and disrupt their function and integrity, and in terms of herbal medicine treatment, which significantly blocked these phenomena. Thus, our findings indicate that maintaining integrity of mitochondria is an essential element in lowering DOX-induced cytotoxicity, which further emphasizes that our herbal medicine can successfully block IGF-IIR pathways and could potentially act as an alternative mechanism in terms of cardioprotective against doxorubicin.

2.
Int J Med Sci ; 21(8): 1491-1499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903928

RESUMO

Age-related structural and functional changes in the kidney can eventually lead to development of chronic kidney disease, which is one of the leading causes of mortality among elderly people. For effective management of age-related kidney complications, it is important to identify new therapeutic interventions with minimal side-effects. The present study was designed to evaluate the synergistic effect of a traditional Chinese herb, Alpinate Oxyphyllae Fructus (AOF), and adipose-derived mesenchymal stem cells (ADMSCs) in ameliorating D-galactose (D-gal)-induced renal aging phenotypes in WKY rats. The study findings showed that D-gal-induced alteration in the kidney morphology was partly recovered by the AOF and ADMSC co-treatment. Moreover, the AOF and ADMSC co-treatment reduced the expression of proinflammatory mediators (NFkB, IL-6, and Cox2) and increased the expression of redox regulators (Nrf2 and HO-1) in the kidney, which were otherwise augmented by the D-gal treatment. Regarding kidney cell death, the AOF and ADMSC co-treatment was found to abolish the proapoptotic effects of D-gal by downregulating Bax and Bad expressions and inhibiting caspase 3 activation. Taken together, the study findings indicate that the AOF and ADMSC co-treatment protect the kidney from D-gal-induced aging by reducing cellular inflammation and oxidative stress and inhibiting renal cell death. This study can open up a new path toward developing novel therapeutic interventions using both AOF and ADMSC to effectively manage age-related renal deterioration.


Assuntos
Medicamentos de Ervas Chinesas , Galactose , Rim , Células-Tronco Mesenquimais , Animais , Galactose/efeitos adversos , Ratos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos , Humanos , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/tratamento farmacológico
3.
Environ Toxicol ; 38(12): 3018-3025, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615216

RESUMO

Hepatocellular carcinoma (HCC), a common primary tumor of liver is a leading cause of cancer-associated deaths. Improving cellular apoptosis and enhancing autophagic clearance is been considered to improve treatment outcomes of HCC. Polyphenols from Pinus morrisonicola (Hayata) have shown various physiological and therapeutic benefits and the flavonoid chrysin is been known for their anticancer effects. However, the main bioactive principle and the mechanism underlying the antitumor activity of pine needle extract are not clear yet. In this study, the effects of ethanol extract from pine needle on HCC cells were determined. The results show that when compared with administration of chrysin alone, a fraction containing pinocembrin, chrysin, and tiliroside significantly reduced autophagy and increased apoptosis. The results also correlated with decrease in cell cycle regulators and the autophagic proteins like LC3-II. Collectively, the results imply the fraction containing pinocembrin, chrysin, and tiliroside as an ideal complementary medicine for an effective antitumor activity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Pinus , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Apoptose , Proliferação de Células , Autofagia , Linhagem Celular Tumoral
4.
Environ Toxicol ; 38(12): 3026-3042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661764

RESUMO

Ohwia caudata (Thunb.) H. Ohashi (Leguminosae) also called as "Evergreen shrub" and Artemisia argyi H.Lév. and Vaniot (Compositae) also named as "Chinese mugwort" those two-leaf extracts frequently used as herbal medicine, especially in south east Asia and eastern Asia. Anthracyclines such as doxorubicin (DOX) are commonly used as effective chemotherapeutic drugs in anticancer therapy around the world. However, chemotherapy-induced cardiotoxicity, dilated cardiomyopathy, and congestive heart failure are seen in patients who receive DOX therapy, with the mechanisms underlying DOX-induced cardiac toxicity remaining unclear. Mitochondrial dysfunction, oxidative stress, inflammatory response, and cardiomyocytes have been shown to play crucial roles in DOX-induced cardiotoxicity. Isoliquiritigenin (ISL, 10 mg/kg) is a bioactive flavonoid compound with protective effects against inflammation, neurodegeneration, cancer, and diabetes. Here, in this study, our aim is to find out the Artemisia argyi (AA) and Ohwia caudata (OC) leaf extract combination with Isoliquiritigenin in potentiating and complementing effect against chemo drug side effect to ameliorate cardiac damage and improve the cardiac function. In this study, we showed that a combination of low (AA 300 mg/kg; OC 100 mg/kg) and high-dose(AA 600 mg/kg; OC 300 mg/kg) AA and OC water extract with ISL activated the cell survival-related AKT/PI3K signaling pathway in DOX-treated cardiac tissue leading to the upregulation of the antioxidant markers SOD, HO-1, and Keap-1 and regulated mitochondrial dysfunction through the Nrf2 signaling pathway. Moreover, the water extract of AA and OC with ISL inhibited the inflammatory response genes IL-6 and IL-1ß, possibly through the NFκB/AKT/PI3K/p38α/NRLP3 signaling pathways. The water extract of AA and OC with ISL could be a potential herbal drug treatment for cardiac hypertrophy, inflammatory disease, and apoptosis, which can lead to sudden heart failure.


Assuntos
Artemisia , Cardiotoxicidade , Extratos Vegetais , Animais , Ratos , Apoptose , Artemisia/química , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Doxorrubicina/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Heme Oxigenase-1/efeitos dos fármacos , Heme Oxigenase-1/metabolismo
5.
Environ Toxicol ; 37(8): 1979-1987, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35442559

RESUMO

Diabetic neuropathy is a common complication of diabetes mellitus, posing a challenge in treatment. Previous studies have indicated the protective role of mesenchymal stem cells against several disorders. Although they can repair nerve injury, their key limitation is that they reduce viability under stress conditions. We recently observed that overactivation of the carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP) considerably rescued cell viability under hyperglycemic stress and played an essential role in promoting the beneficial effects of Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Thus, the present study was designed to unveil the protective effects of CHIP-overexpressing WJMSCs against neurodegeneration using in vivo animal model based study. In this study, western blotting observed that CHIP-overexpressing WJMSCs could rescue nerve damage observed in streptozotocin-induced diabetic rats by activating the AMPKα/AKT and PGC1α/SIRT1 signaling pathway. In contrast, these signaling pathways were downregulated upon silencing CHIP. Furthermore, CHIP-overexpressing WJMSCs inhibited inflammation induced in the brains of diabetic rats by suppressing the NF-κB, its downstream iNOS and cytokines signaling nexus and enhancing the antioxidant enzyme system. Moreover, TUNEL assay demonstrated that CHIP carrying WJMSCs suppressed the apoptotic cell death induced in STZ-induced diabetic group. Collectively, our findings suggests that CHIP-overexpressing WJMSCs might exerts beneficial effects, which may be considered as a therapeutic strategy against diabetic neuropathy complications.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Células-Tronco Mesenquimais , Geleia de Wharton , Animais , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/prevenção & controle , Ratos , Estreptozocina/metabolismo , Estreptozocina/farmacologia
6.
Environ Toxicol ; 37(8): 2096-2102, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35583127

RESUMO

Diabetic nephropathy is a serious chronic complication affecting at least 25% of diabetic patients. Hyperglycemia associated advanced glycation end-products (AGEs) increase tubular epithelial-myofibroblast transdifferentiation (TEMT) and extracellular matrix synthesis and thereby causes renal fibrosis. The chalcone isoliquiritigenin, found in many herbs of Glycyrrhiza family, is known for potential health-promoting effects. However, their effects on AGE-associated renal proximal tubular fibrosis are not known yet. In this study, the effect of isoliquiritigenin on AGE-induced renal proximal tubular fibrosis was determined in cultured HK-2 cell line. The results show that 200 µg/mL of AGE-induced TEMT and the formed myofibroblasts synthesized collagen to increase extracellular matrix formation thereby lead to renal tubular fibrosis. However, treatment with 200 nM of isoliquiritigenin considerably inhibited the TEMT and suppressed the TGFß/STAT3 mechanism to inhibit collagen secretion. Therefore, isoliquiritigenin effectively suppressed AGE-induced renal tubular fibrosis.


Assuntos
Chalconas , Nefropatias Diabéticas , Chalconas/farmacologia , Colágeno/metabolismo , Nefropatias Diabéticas/metabolismo , Células Epiteliais , Fibrose , Produtos Finais de Glicação Avançada/metabolismo , Humanos
7.
Mol Cell Biochem ; 476(9): 3253-3260, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33886061

RESUMO

Pathological cardiac hypertrophy is associated with many diseases including hypertension. Recent studies have identified important roles for microRNAs (miRNAs) in many cardiac pathophysiological processes, including the regulation of cardiomyocyte hypertrophy. However, the role of miR-145-5p in the cardiac setting is still unclear. In this study, H9C2 cells were overexpressed with microRNA-145-5p, and then treated with Ang-II for 24 h, to study the effect of miR-145-5p on Ang-II-induced myocardial hypertrophy in vitro. Results showed that Ang-II treatment down-regulated miR-145-5p expression were revered after miR-145-5p overexpression. Based on results of bioinformatics algorithms, paxillin was predicted as a candidate target gene of miR-145-5p, luciferase activity assay revealed that the luciferase activity of cells was substantial downregulated the following co-transfection with wild paxillin 3'UTR and miR-145-5p compared to that in scramble control, while the inhibitory effect of miR-145-5p was abolished after transfection of mutant paxillin 3'UTR. Additionally, overexpression of miR-145-5p markedly inhibited activation of Rac-1/ JNK /c-jun/ NFATc3 and ANP expression and induced SIRT1 expression in Ang-II treated H9c2 cells. Jointly, our study suggested that miR-145-5p inhibited cardiac hypertrophy by targeting paxillin and through modulating Rac-1/ JNK /c-jun/ NFATc3/ ANP / Sirt1 signaling, therefore proving novel downstream molecular pathway of miR-145-5p in cardiac hypertrophy.


Assuntos
Angiotensina II/toxicidade , Cardiomegalia/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Mioblastos Cardíacos/efeitos dos fármacos , Paxilina/antagonistas & inibidores , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Vasoconstritores/toxicidade , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Environ Toxicol ; 36(5): 926-934, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33448586

RESUMO

Heart failure (HF) and cardiac hypertrophy is an unfavorable outcome of pathological cardiac remodeling and represents the most important contributing factor for HF and cardiac hypertrophy. Amygdalin (AMG) is a cyanogenic glycoside derived from bitter almonds. Accumulating evidences have highlighted their pharmacological potentials against various diseases. However, there is no report delineating the potential of AMG against angiotensin (Ang II) induced cardiac injuries. Thus, the present study was performed to explore whether AMG could ameliorate Ang II induced cardiomyopathies and thereby ascertain the underlying mechanisms thereof. To this end, H9c2 cells were treated with Ang II and thereafter treated with various concentration of AMG and finally the cardio-protective effects of AMG were analyzed through Western blotting, immunofluorescence, and insilico analysis. Our results showed that the cardiomyocyte cell size, inflammatory markers and cytokines(pNF-κB, TNF-α, iNOS and COX-2) were markedly increased following Ang II treatment; nevertheless, treatment with AMG led to considerable decrement in the Ang II induced enlargement of the cardiomyocytes, and attenuate the expression of hypertrophic markers(ANP, BNP and MHC-7), inflammatory markers and cytokines. Additionally, oxidative stress related proteins (Nrf2, catalase, SOD-2, and GPX-4) were markedly increased following AMG treatment. Molecular docking reveals the interaction of AMG with Nrf2 possessing good binding affinity. Cumulatively, our study highlights the cardio-protective role of AMG against Ang II induced cardiomyopathies, including oxidative stress and inflammation effects. The intriguing in vitro results warrants the need of further animal studies to truly ascertain their potentialities.


Assuntos
Amigdalina , Angiotensina II , Amigdalina/farmacologia , Angiotensina II/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo
9.
Environ Toxicol ; 36(1): 86-94, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32889782

RESUMO

This study addresses the effect of D-galactose-induced toxicity associated senescence mitigated by alpinate oxyphyllae fructus (AOF; Alpinia oxyphylla Miq) extracts fortified with adipose-derived mesenchymal stem cells (ADMSCs) in rats. Male 18 week-old Wistar Kyoto (WKY) rats were used in this study. We analyzed cardiac fibrosis by Masson's trichrome staining. The tissue sections were dyed using hematoxylin and eosin (H&E). Tissue sections were stained for the restoration of Nrf2 expression in treatment groups by immunohistochemistry. Immunohistochemistry and western blotting analysis showed that AOF with ADMSCs could significantly reduce aging-induced oxidative stress in D-galactose-induced aging rat hearts by inducing Nrf2 pathway. Reduction in ROS resulted in the suppression of inflammatory signals (p-NF-κB and IL-6). Histopathological studies were showed an increased interstitium and collagen accumulation in aging-induced heart sections. However, AOF and ADMSCs treated hearts were recovered from cardiac remodeling. Furthermore, hypertrophy and fibrosis associated markers were also significantly reduced (P < .05) in treatment groups. We speculate that ADMSCs might activate certain paracrine factors, which could target the upstream activator of aging associated cardiac complications and AOF might provide homing for these stem cells.

10.
Environ Toxicol ; 36(12): 2475-2483, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34495567

RESUMO

The insulin-like growth factor II receptor (IGF-IIR) induces myocardial hypertrophy under various pathological conditions like diabetes and hypertension via G protein receptors like Gαq or Gαs. Increased expression of the ligand IGF II and IGF-IIR induces pathological hypertrophy through downstream signaling mediators such as calcineurin, nuclear factor of activated T cells 3 and calcium-calmodulin (CaM)-dependent kinase II (CaMKII)-histone deacetylase 4 (HDAC4). The dried stigma of Crocus sativus L. (saffron) has a long repute as a traditional medicine against various disorders. In the present study, we have investigated whether C. sativus extract (CSE) canameliorate Leu27 IGF-II triggered hypertrophy and have elucidated the underlying mechanism of protection. Additionally, the effects of oleic acid (OA), an activator of calcineurin and CaMKII was investigated thereof. The results demonstrate that CSE can ameliorate Leu27 IGF-II-induced hypertrophy seemingly through regulation of calcineurin-NFAT3 and CaMKII-HDAC4 signaling cascade.


Assuntos
Calcineurina , Crocus , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Hipertrofia , Fator de Crescimento Insulin-Like II/genética , Miócitos Cardíacos
11.
Environ Toxicol ; 36(7): 1466-1475, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33881220

RESUMO

In aging hypertensive conditions, deterioration of insulin-like growth factor 1 receptor (IGF1R) cause a pathological impact on hypertensive hearts with an increased Ang II level. Recovering these adverse conditions through transplanted adipose-derived stem cells is a challenging approach. Moreover, Danggui, a Traditional Chinese medicine (TCM), is used for the treatment of cardioprotective effects. In this study, to evaluate whether the combined effect of MSCs and TCM can recover the cardiac function in late-stage hypertension rats. We observed that lower dose of Danggui crude extract treatment showed an increased level of cell viability with maintained stemness properties and growth rate in rat adipose-derived stem cells (rADSCs). Further, we cocultured the H9c2 cells with rADSCs and the results revealed that Danggui-treated MSCs enhanced the IGF1R expression and attenuated the hypertrophy in H9c2 cells against Ang II challenge by immunoblot and rhodamine-phalloidin staining. In addition, Danggui crude extract was also quantified and characterized by HPLC and LC-MS analysis. Furthermore, the in vivo study was performed by considering 11 months old rats (n = 7). Importantly, the oral administration of Danggui crude extract with stem cells intravenous injection in SHR-D-ADSCs group showed a combination effect to augment the cardiac function through enhancement of ejection fraction, fractional shortening, contractility function in the late-stage hypertension conditions. We have also observed a decreased apoptosis rate in the heart tissue of SHR-D-ADSCs group. Taken together, these results indicate that the combinatorial effects of Danggui crude extract and stem cell therapy enhanced cardiac function in late-stage SHR rats.


Assuntos
Hipertensão , Fator de Crescimento Insulin-Like I , Animais , Ratos , Ratos Endogâmicos SHR , Células-Tronco , Regulação para Cima
12.
Biochem Biophys Res Commun ; 532(3): 347-354, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32888650

RESUMO

Hypoxic preconditioning is a well-known strategy to improve the survival and therapeutic potential of stem cells against various challenges including hemodynamic and neurohormonal modulations. However, the mechanism involved in hypoxia-induced benefits on stem cells is still ambiguous. In pathological hypertension, the elevation of the neurohormonal mediator Angiotensin II (Ang II) causes the adverse effects to stem cells. In this study, we investigate the effect and mechanism of action of short term hypoxia-inducible miRNA in suppressing the effects of AngII on stem cells. According to the results obtained, Ang II affects the normal cell cycle and triggers apoptosis in rADSCs with a corresponding increase in the expression of cell death-inducing p53 target 1 (CDIP1) protein. However, the short term hypoxia-inducible miRNA-miR-210-3p was found to target CDIP1 and reduce their levels upon the Ang II challenge. CDIP1 induces stress-mediated apoptosis involving the extrinsic apoptosis pathway via Bid/Bax/cleaved caspase3 activation. Administration of mimic miR-210-3p targets CDIP1 mRNA by binding to the 3' UTR region as confirmed by dual luciferase assay and also reduced Ang II-induced mitochondrial ROS accumulation as analyzed by MitoSOX staining. Moreover, the present study demonstrates the mechanism of miR-210-3p in the regulation of Ang II-induced CDIP1-associated apoptotic pathway in rADSCs.


Assuntos
Angiotensina II/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Tecido Adiposo/citologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Pontos de Checagem do Ciclo Celular , Hipóxia Celular , Proliferação de Células , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
13.
Int J Mol Sci ; 21(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397561

RESUMO

Although various advancements in radical surgery and neoadjuvant chemotherapy have been developed in treating osteosarcoma (OS), their clinical prognosis remains poor. A synthetic chemical compound, 3-hydroxylflavone, that is reported to regulate ROS production is known to inhibit human bone osteosarcoma cells. However, its role and mechanism in human OS cells remains unclear. In this study, we have determined the potential of 3-Hydroxy-2-phenylchromone (3-HF) against OS using human osteosarcoma (HOS) cells. Our previous studies showed that Zipper sterile-alpha-motif kinase (ZAK), a kinase member of the MAP3K family, was involved in various cellular events such as cell proliferation and cell apoptosis, and encoded two transcriptional variants, ZAKα and ß. In this study, we show that 3-HF induces the expression of ZAK and thereby enhances cellular apoptosis. Using gain of function and loss of function studies, we have demonstrated that ZAK activation by 3-HF in OS cells is confined to a ZAKß form that presumably plays a leading role in triggering ZAKα expression, resulting in an aggravated cancer apoptosis. Our results also validate ZAKß as the predominant form of ZAK to drive the anticancer mechanism in HOS cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/patologia , Flavonoides/farmacologia , MAP Quinase Quinase 4/efeitos dos fármacos , MAP Quinase Quinase Quinases/efeitos dos fármacos , Osteossarcoma/patologia , Caspase 3/biossíntese , Caspase 3/genética , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Mutação com Ganho de Função , Humanos , Mutação com Perda de Função , MAP Quinase Quinase Quinases/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
Exp Cell Res ; 363(2): 227-234, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29331388

RESUMO

The bZIP transcription factor E4BP4 is a survival factor that is known to be elevated in diseased heart and promote cell survival. In this study the role of E4BP4 on angiotensin-II (AngII)-induced apoptosis has been examined in in vitro cell model. H9c2 cardiomyoblast cells that overexpressed E4BP4 were exposed to AngII to observe the cardio-protective effects of E4BP4 on hypertension related apoptosis. The results from TUNEL assays revealed that E4BP4 significantly attenuated AngII-induced apoptosis. Further analysis by Western blot and RT-PCR showed that E4BP4 inhibited AngII-induced IGF-II mRNA expression and cleavage of caspase-3 through the PI3K-Akt pathway. In addition, E4BP4 enhanced calcium reuptake into the sacroplasmic reticulum by down-regulating PP2A and by up-regulating the phosphorylation of PKA and PLB proteins. Our findings indicate that E4BP4 functions as a survival factor in cardiomyoblasts by inhibiting IGF-II transcription and by regulating calcium cycling.


Assuntos
Apoptose/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Angiotensina II/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
Environ Toxicol ; 34(6): 760-767, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30884126

RESUMO

Oral Squamous Cell Carcinoma (OSSC) is a major life-threatening disease with high incidence in the Southeast Asian countries. Chronic exposure to arecoline causes genetic changes in the epithelial cells of the oral mucosa, induces proliferation through activation of the EGF receptor and promotes downstream COX-2 expression. Taiwanin C, a podophyllotoxin derived from Taiwania cryptomerioides Hayata is known to inhibit COX activity and to hinder PGE2 production in macrophages. In this study a tumor cell line T28 and a non-tumor cell line N28 derived from mice OSCC models were used to study the effect of Taiwanin C on PGE2 associated COX-2 expression and cell cycle regulators. Taiwanin C activated p21 protein expression, down-regulated cell cycle regulatory proteins, elevated apoptosis and down-regulated p-PI3K/p-Akt survival mechanism in T28 oral cancer cells. Our results therefore emphasize the therapeutic potential of Taiwanin C against arecoline-induced oral cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Lactonas/farmacologia , Lignanas/farmacologia , Neoplasias Bucais/patologia , Inibidores de Fosfoinositídeo-3 Quinase , 4-Nitroquinolina-1-Óxido/toxicidade , Animais , Arecolina/toxicidade , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/metabolismo
16.
Environ Toxicol ; 34(8): 921-927, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31066208

RESUMO

Hyperkalemia is often associated with cardiac dysfunction. In this study an earthworm extract (dilong) was prepared from dried Pheretima aspergillum powder and its effect against high-KCl challenge was determined in H9c2 cardiomyoblast cells. H9c2 cells pre-treated with dilong (31.25, 62.5, 125, and 250 mg/mL) for 24 hours, where challenged with different doses of KCl treatment for 3 hours to determine the protective mechanisms of dilong against cardiac fibrosis. High-KCl administration induced mitochondrial injury and elevated the levels of pro-apoptotic proteins. The mediators of fibrosis such as ERK, uPA, SP1, and CTGF were also found to be upregulated in high-KCl condition. However, dilong treatment enhanced IGF1R/PI3k/Akt activation which is associated with cell survival. In addition, dilong also reversed high-KCl induced cardiac fibrosis related events in H9c2 cells and displayed a strong cardio-protective effect. Therefore, dilong is a potential agent to overcome cardiac events associated with high-KCl toxicity.


Assuntos
Mitocôndrias Cardíacas/efeitos dos fármacos , Mioblastos Cardíacos/efeitos dos fármacos , Oligoquetos , Cloreto de Potássio/toxicidade , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Sobrevivência Celular , Fibrose , Mioblastos Cardíacos/patologia , Substâncias Protetoras/farmacologia
17.
J Cell Biochem ; 119(9): 7855-7864, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932238

RESUMO

Aberrant expression of leucine zipper- and sterile ɑ motif-containing kinase (ZAK) observed in pathological human myocardial tissue is associated with the progression and elevation of hypertrophy. Our previous reports have correlated high levels of estrogen (E2) and abundant estrogen receptor (ER) α with a low incidence of pathological cardiac-hypertrophy and heart failure in the premenopause female population. However, the effect of elevated ERß expression is not well known yet. Therefore, in this study, we have analyzed the cardioprotective effects and mechanisms of E2 and/or ERß against ZAK overexpression-induced cellular hypertrophy. We have used transient transfection to overexpress ERß into the ZAK tet-on H9c2 cells that harbor the doxycycline-inducible ZAK plasmid. The results show that ZAK overexpression in H9c2 cells resulted in hypertrophic effects, which was correlated with the upregulation of p-JNK and p-p38 MAPKs and their downstream transcription factors c-Jun and GATA-4. However, ERß and E2 with ERß overexpressions totally suppressed the effects of ZAK overexpression and inhibited the levels of p-JNK, p-p38, c-Jun, and GATA-4 effectively. Our results further reveal that ERß directly binds with ZAK under normal conditions; however, ZAK overexpression reduced the association of ZAK-ERß. Interestingly, increase in ERß and E2 along with ERß overexpression both enhanced the binding strengths of ERß and ZAK and reduced the ZAK protein level. ERß overexpression also suppressed the E3 ligase-casitas B-lineage lymphoma (CBL) and attenuated CBL-phosphoinositide 3-kinase (PI3K) protein association to prevent PI3K protein degradation. Moreover, ERß and/or E2 blocked ZAK nuclear translocation via the inhibition of small ubiquitin-like modifier (SUMO)-1 modification. Taken together, our results further suggest that ERß overexpression strongly suppresses ZAK-induced cellular hypertrophy and myocardial damage.


Assuntos
Receptor beta de Estrogênio/genética , Mioblastos Cardíacos/citologia , Proteínas Quinases/metabolismo , Proteína SUMO-1/metabolismo , Animais , Crescimento Celular , Linhagem Celular , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-cbl , Ratos
18.
Cell Physiol Biochem ; 48(5): 1942-1952, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092591

RESUMO

BACKGROUND/AIMS: High-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) poses therapeutic challenges in elderly subjects. Due to lack of efficient drug therapy, plant-based bioactive peptides have been studied as alternative strategy in NAFLD and for less toxicity in elderly. To mimic fatty liver in aging conditions, researchers highly commended the genetically engineered strains SAMP8 (senescence-accelerated mice prone 8). However, there is a paucity of reports about the anti-steatosis effects of bioactive peptides against fatty liver development under a combined action of high-fat diet exposure and aging process. This study was conducted to evaluate the activity of DIKTNKPVIF peptide synthesized from alcalase-generated potato protein hydrolysate (PH), on reducing HFD-driven and steatosis-associated proinflammatory reaction in ageing model. METHODS: Five groups of six-month-old SAMP8 mice (n=4, each) were fed either a normal chow (NC group) for 14 weeks upon sacrifice, or induced with a 6-week HFD feeding, then treated without (HCO group) or with an 8-week simultaneous administration of peptide (HPEP group), protein (HPH group) or probucol (HRX group). Liver organs were harvested from each group for histological analysis and immunoblot assay. RESULTS: In contrast to NC, extensive fat accumulation was visualized in the liver slides of HCO. Following the trends of orally administered PH, intraperitoneally injected peptide reduces hepatic fat deposition and causes at protein level, a significant decrease in HFD-induced proinflammatory mediators p-p38 MAPK, FGF-2, TNF-α, IL-6 with concomitant reactivation of AMPK. However, p-Foxo1 and PPAR-α levels were slightly changed. CONCLUSION: Oral supplementation of PH and intraperitoneal injection of derived bioactive peptide alleviate proinflammatory reaction associated with hepatosteatosis development in elderly subjects, through activation of AMPK.


Assuntos
Envelhecimento , Dieta Hiperlipídica , Fígado/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Animais , Proteína Forkhead Box O1/metabolismo , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Fígado/patologia , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/veterinária , PPAR alfa/metabolismo , Peptídeos/síntese química , Peptídeos/química , Probucol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Environ Toxicol ; 33(12): 1254-1260, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30208247

RESUMO

Human hepatocellular carcinoma (HCC) is currently the second most common cancer and one of the leading causes of cancer-related mortality in Taiwan. Previous reports show that the expression of (E-type prostaglandin 2) EP2 and (E-type prostaglandin 4) EP4 are elevated in HCC and further demonstrate that Prostaglandin E2 (PGE2) induces HA22T cell proliferation and metastasis through EP2 and EP4 receptor. Danshen (root of Salvia miltiorrhiza Bunge) is a very important and popular traditional Chinese herbal medicine which is widely and successfully used against breast cancer, leukemia, pancreatic cancer, and head and neck squamous carcinoma cells. In this study, we used Cryptotansinone (Dsh-003) (MW 269.14) from Danshen to investigate their effect and corresponding mechanism of action in PGE2-treated HA22T cells. Dsh-003 inhibited HA22T cell viability and further induced cell apoptosis in PGE2-treated HA22T cells. Furthermore, Dsh-003 inhibited EP2, EP4, and their downstream effector such as p-PI3K and p-Akt expression in HA22T hepatocellular carcinoma cells. We also observed that Dsh-003 blocked PGE2-induced cell migration by down-regulating PGE2-induced ß-catenin expression and by up-regulating E-cadherin and GSK3-ß expression. All these findings suggest that Dsh-003 inhibit human HCC cell lines and could potentially be used as a novel drug for HCC treatment.


Assuntos
Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Dinoprostona/farmacologia , Neoplasias Hepáticas/patologia , Fenantrenos/isolamento & purificação , Fenantrenos/farmacologia , Salvia miltiorrhiza/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
20.
Environ Toxicol ; 33(2): 220-233, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29139225

RESUMO

Tea, the most widely consumed natural beverage has been associated with reduced mortality risk from cardiovascular disease. Oolong tea is a partially fermented tea containing high levels of catechins, their degree of oxidation varies between 20%-80% causing differences in their active metabolites. In this study we examined the effect of oolong tea extract (OTE) obtained by oxidation at low-temperature for short-time against hypoxic injury and found that oolong tea provides cyto-protective effects by suppressing the JNK mediated hypertrophic effects and by enhancing the innate antioxidant mechanisms in neonatal cardiomyocytes and in H9c2 cells. OTE effectively attenuates 24 h hypoxia-triggered cardiomyocyte loss by suppressing caspase-3-cleavage and apoptosis in a dose-dependent manner. OTE also enhances the IGFIR/p-Akt associated survival-mechanism involving the elevation of p-Badser136 in a dose-dependent manner to aid cellular adaptations against hypoxic challenge. The results show the effects and mechanism of Oolong tea to provide cardio-protective benefits during hypoxic conditions.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Chá/química , Proteína de Morte Celular Associada a bcl/metabolismo , Animais , Antioxidantes/metabolismo , Caspase 3/metabolismo , Hipóxia Celular , Células Cultivadas , Hipertrofia/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , Extratos Vegetais/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Receptores de Somatomedina/metabolismo , Chá/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa