Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 107(1): 111-123, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32533946

RESUMO

Partial or complete loss-of-function variants in SCN5A are the most common genetic cause of the arrhythmia disorder Brugada syndrome (BrS1). However, the pathogenicity of SCN5A variants is often unknown or disputed; 80% of the 1,390 SCN5A missense variants observed in at least one individual to date are variants of uncertain significance (VUSs). The designation of VUS is a barrier to the use of sequence data in clinical care. We selected 83 variants: 10 previously studied control variants, 10 suspected benign variants, and 63 suspected Brugada syndrome-associated variants, selected on the basis of their frequency in the general population and in individuals with Brugada syndrome. We used high-throughput automated patch clamping to study the function of the 83 variants, with the goal of reclassifying variants with functional data. The ten previously studied controls had functional properties concordant with published manual patch clamp data. All 10 suspected benign variants had wild-type-like function. 22 suspected BrS variants had loss of channel function (<10% normalized peak current) and 22 variants had partial loss of function (10%-50% normalized peak current). The previously unstudied variants were initially classified as likely benign (n = 2), likely pathogenic (n = 10), or VUSs (n = 61). After the patch clamp studies, 16 variants were benign/likely benign, 45 were pathogenic/likely pathogenic, and only 12 were still VUSs. Structural modeling identified likely mechanisms for loss of function including altered thermostability and disruptions to alpha helices, disulfide bonds, or the permeation pore. High-throughput patch clamping enabled reclassification of the majority of tested VUSs in SCN5A.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/genética , Arritmias Cardíacas/genética , Síndrome de Brugada/genética , Linhagem Celular , Feminino , Variação Genética , Genótipo , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Fenótipo
2.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216338

RESUMO

The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we perform docking calculations and high-throughput electrophysiology experiments in the present study. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the "mouth" of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5.


Assuntos
Boca/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Sódio/metabolismo , Veratridina/farmacologia , Sítios de Ligação/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Neurotoxinas/farmacologia
3.
Circ Genom Precis Med ; 13(1): e002786, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31928070

RESUMO

BACKGROUND: Variants in ion channel genes have classically been studied in low throughput by patch clamping. Deep mutational scanning is a complementary approach that can simultaneously assess function of thousands of variants. METHODS: We have developed and validated a method to perform a deep mutational scan of variants in SCN5A, which encodes the major voltage-gated sodium channel in the heart. We created a library of nearly all possible variants in a 36 base region of SCN5A in the S4 voltage sensor of domain IV and stably integrated the library into HEK293T cells. RESULTS: In preliminary experiments, challenge with 3 drugs (veratridine, brevetoxin, and ouabain) could discriminate wild-type channels from gain- and loss-of-function pathogenic variants. High-throughput sequencing of the pre- and postdrug challenge pools was used to count the prevalence of each variant and identify variants with abnormal function. The deep mutational scan scores identified 40 putative gain-of-function and 33 putative loss-of-function variants. For 8 of 9 variants, patch clamping data were consistent with the scores. CONCLUSIONS: These experiments demonstrate the accuracy of a high-throughput in vitro scan of SCN5A variant function, which can be used to identify deleterious variants in SCN5A and other ion channel genes.


Assuntos
Análise Mutacional de DNA/métodos , Toxinas Marinhas/farmacologia , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Ouabaína/farmacologia , Oxocinas/farmacologia , Testes Farmacogenômicos/métodos , Veratridina/farmacologia , Cardiotônicos/farmacologia , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa