RESUMO
The olfactory system has become an important functional gateway to understand and analyze neuromodulation since olfactory dysfunction and deficits have emerged as prodromal and, at other times, as first symptoms of many of neurodegenerative, neuropsychiatric and communication disorders. Considering olfactory dysfunction as outcome of altered, damaged and/or inefficient olfactory processing, in the current review, we analyze how olfactory processing interacts with the endocannabinoid signaling system. In the human body, endocannabinoid synthesis is a natural and on-demand response to a wide range of physiological and environmental stimuli. Our current understanding of the response dynamics of the endocannabinoid system is based in large part on research advances in limbic system areas, such as the hippocampus and the amygdala. Functional interactions of this signaling system with olfactory processing and associated pathways are just emerging but appear to grow rapidly with multidimensional approaches. Recent work analyzing the crystal structure of endocannabinoid receptors bound to their agonists in a signaling complex has opened avenues for developing specific therapeutic drugs that could help with neuroinflammation, neurodegeneration, and alleviation/reduction of pain. We discuss the role of endocannabinoids as signaling molecules in the olfactory system and the relevance of the endocannabinoid system for synaptic plasticity.
Assuntos
Endocanabinoides , Transtornos do Olfato , Endocanabinoides/metabolismo , Humanos , Plasticidade Neuronal/fisiologia , Transtornos do Olfato/metabolismo , Bulbo Olfatório/metabolismo , Olfato/fisiologiaRESUMO
In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.
Assuntos
Anosmia/diagnóstico , COVID-19/diagnóstico , Adulto , Anosmia/etiologia , COVID-19/complicações , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , SARS-CoV-2/isolamento & purificação , Autorrelato , OlfatoRESUMO
We evaluated a novel push-pull control strategy for protecting highbush blueberry, Vaccinium corymbosum, against spotted-wing drosophila (SWD), Drosophila suzukii. Methyl benzoate (MB) was used as the pushing agent and a previously tested SWD attractive blend of lure-scents was used as the pulling agent. MB dispensers (push) were hung in the canopy and lure-scent dispensers (pull) were hung in yellow jacket traps filled with soapy water around the blueberry bushes. Blueberries were sampled weekly, and any infestation was inspected by examining the breathing tubes of SWD eggs which protrude through the skin of infested fruit. The frequency of infestation, i.e., the proportion of berries infested with at least one egg, and the extent of infestation, i.e., the mean number of eggs in infested berries, were significantly reduced in treatments receiving MB dispensers as a pushing agent when infestation rates were very high. However, the mass trapping devices as a pulling agent did not provide comparable protection on their own and did not produce additive protection when used in combination with the MB dispensers in push-pull trials. We conclude that MB has the potential to be implemented as a spatial repellent/oviposition deterrent to reduce SWD damage in blueberry under field conditions and does not require the SWD attractant as a pulling agent to achieve crop protection.
RESUMO
BACKGROUND: Smell disorders are commonly reported with COVID-19 infection. The smell-related issues associated with COVID-19 may be prolonged, even after the respiratory symptoms are resolved. These smell dysfunctions can range from anosmia (complete loss of smell) or hyposmia (reduced sense of smell) to parosmia (smells perceived differently) or phantosmia (smells perceived without an odor source being present). Similar to the difficulty that people experience when talking about their smell experiences, patients find it difficult to express or label the symptoms they experience, thereby complicating diagnosis. The complexity of these symptoms can be an additional burden for patients and health care providers and thus needs further investigation. OBJECTIVE: This study aims to explore the smell disorder concerns of patients and to provide an overview for each specific smell disorder by using the longitudinal survey conducted in 2020 by the Global Consortium for Chemosensory Research, an international research group that has been created ad hoc for studying chemosensory dysfunctions. We aimed to extend the existing knowledge on smell disorders related to COVID-19 by analyzing a large data set of self-reported descriptive comments by using methods from natural language processing. METHODS: We included self-reported data on the description of changes in smell provided by 1560 participants at 2 timepoints (second survey completed between 23 and 291 days). Text data from participants who still had smell disorders at the second timepoint (long-haulers) were compared with the text data of those who did not (non-long-haulers). Specifically, 3 aims were pursued in this study. The first aim was to classify smell disorders based on the participants' self-reports. The second aim was to classify the sentiment of each self-report by using a machine learning approach, and the third aim was to find particular food and nonfood keywords that were more salient among long-haulers than those among non-long-haulers. RESULTS: We found that parosmia (odds ratio [OR] 1.78, 95% CI 1.35-2.37; P<.001) as well as hyposmia (OR 1.74, 95% CI 1.34-2.26; P<.001) were more frequently reported in long-haulers than in non-long-haulers. Furthermore, a significant relationship was found between long-hauler status and sentiment of self-report (P<.001). Finally, we found specific keywords that were more typical for long-haulers than those for non-long-haulers, for example, fire, gas, wine, and vinegar. CONCLUSIONS: Our work shows consistent findings with those of previous studies, which indicate that self-reports, which can easily be extracted online, may offer valuable information to health care and understanding of smell disorders. At the same time, our study on self-reports provides new insights for future studies investigating smell disorders.
Assuntos
COVID-19 , Processamento de Linguagem Natural , Transtornos do Olfato , Autorrelato , Humanos , COVID-19/complicações , COVID-19/epidemiologia , Transtornos do Olfato/epidemiologia , Transtornos do Olfato/etiologia , Estudos Transversais , Masculino , Feminino , Estudos Longitudinais , Pessoa de Meia-Idade , Adulto , Idoso , Adulto JovemRESUMO
Introduction: There have been large geographical differences in the infection and death rates of COVID-19. Foods and beverages containing high amounts of phytochemicals with bioactive properties were suggested to prevent contracting and to facilitate recovery from COVID-19. The goal of our study was to determine the correlation of the type of foods/beverages people consumed and the risk reduction of contracting COVID-19 and the recovery from COVID-19. Methods: We developed an online survey that asked the participants whether they contracted COVID-19, their symptoms, time to recover, and their frequency of eating various types of foods/beverages. The survey was developed in 10 different languages. Results: The participants who did not contract COVID-19 consumed vegetables, herbs/spices, and fermented foods/beverages significantly more than the participants who contracted COVID-19. Among the six countries (India/Iran/Italy/Japan/Russia/Spain) with over 100 participants and high correspondence between the location of the participants and the language of the survey, in India and Japan the people who contracted COVID-19 showed significantly shorter recovery time, and greater daily intake of vegetables, herbs/spices, and fermented foods/beverages was associated with faster recovery. Conclusions: Our results suggest that phytochemical compounds included in the vegetables may have contributed in not only preventing contraction of COVID-19, but also accelerating their recovery.
RESUMO
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female's sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.
Assuntos
Antenas de Artrópodes/anatomia & histologia , Rede Nervosa/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Animais , Antenas de Artrópodes/fisiologia , Insetos , Transdução de SinaisRESUMO
Three gustatory receptor neurons were characterized for contact chemoreceptive sensilla on the labella of female yellow-fever mosquitoes, Aedes aegypti. The neuron with the smallest amplitude spike responded to the feeding deterrent, quinine, as well as N,N-diethyl-3-methylbenzamide and other insect repellents. Two other neurons with differing spikes responded to salt (NaCl) and sucrose. This is the first report of a gustatory receptor neuron specific for insect repellents in mosquitoes and may provide a tool for screening chemicals to discover novel or improved feeding deterrents and repellents for use in the management of arthropod disease vectors.
Assuntos
Aedes/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Aedes/fisiologia , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Cloreto de Sódio/farmacologia , Sacarose/farmacologiaRESUMO
BACKGROUND: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19. METHODS: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery. RESULTS: Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset. CONCLUSIONS: As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10
RESUMO
Lepidopteran larvae possess two pairs of styloconic sensilla located on the maxillary galea. These sensilla, namely the lateral and medial styloconic sensilla, are each comprised of a smaller cone, which is inserted into a style. They are thought to play an important role in host-plant selection and are the main organs involved in feeding. Ultrastructural examination of these sensilla of fifth instar Lymantria dispar (L.) larvae reveal that they are each approximately 70 um in length and 30 um in width. Each sensillum consists of a single sensory peg inserted into the socket of a large style. Each peg bears a slightly subapical terminal pore averaging 317 nm in lateral and 179 nm in medial sensilla. Each sensillum houses five bipolar neurons. The proximal dendritic segment of each neuron gives rise to an unbranched distal dendritic segment. Four of these dendrites terminate near the tip of the sensillum below the pore and bear ultrastructural features consistent with contact chemosensilla. The fifth distal dendrite terminates near the base of the peg and bears ultrastructural features consistent with mechanosensilla. Thus, these sensilla each bear a bimodal chemo-mechanosensory function. The distal dendrites lie within the dendritic channel and are enclosed by a dendritic sheath. The intermediate and outer sheath cells enclose a large sensillar sinus, whereas the smaller ciliary sinus is enclosed by the inner cell. The neurons are ensheathed successively by the inner, intermediate, and outer sheath cells.
RESUMO
The interactions between insect repellents and the olfactory system have been widely studied, however relatively little is known about the effects of repellents on the gustatory system of insects. In this study, we show that the gustatory receptor neuron (GRN) located in the medial styloconic sensilla on the maxillary palps of gypsy moth larvae, and known to be sensitive to feeding deterrents, also responds to the insect repellents DEET, IR3535, and picaridin. These repellents did not elicit responses in the lateral styloconic sensilla. Moreover, behavioral studies demonstrated that each repellent deterred feeding. This is the first study to show perception of insect repellents by the gustatory system of a lepidopteran larva and suggests that detection of a range of bitter or aversive compounds may be a broadly conserved feature among insects.
Assuntos
Comportamento Animal/efeitos dos fármacos , DEET/farmacologia , Repelentes de Insetos/farmacologia , Mariposas/fisiologia , Piperidinas/farmacologia , Propionatos/farmacologia , Animais , Comportamento Animal/fisiologia , LarvaRESUMO
Nine alkaloids (acridine, aristolochic acid, atropine, berberine, caffeine, nicotine, scopolamine, sparteine, and strychnine) were evaluated as feeding deterrents for gypsy moth larvae (Lymantria dispar (L.); Lepidoptera: Lymantriidae). Our aim was to determine and compare the taste threshold concentrations, as well as the ED(50) values, of the nine alkaloids to determine their potency as feeding deterrents. The alkaloids were applied to disks cut from red oak leaves (Quercus rubra) (L.), a plant species highly favored by larvae of this polyphagous insect species. We used two-choice feeding bioassays to test a broad range of biologically relevant alkaloid concentrations spanning five logarithmetic steps. We observed increasing feeding deterrent responses for all the alkaloids tested and found that the alkaloids tested exhibited different deterrency threshold concentrations ranging from 0.1 mM to 10 mM. In conclusion, it appears that this generalist insect species bears a relatively high sensitivity to these alkaloids, which confirms behavioral observations that it avoids foliage containing alkaloids. Berberine and aristolochic acid were found to have the lowest ED(50) values and were the most potent antifeedants.
RESUMO
Deterrent compounds are important in influencing the food selection of many phytophagous insects. Plants containing deterrents, such as alkaloids, are generally unfavored and typically avoided by many polyphagous lepidopteran species, including the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae). We tested the deterrent effects of eight alkaloids using two-choice feeding bioassays. Each alkaloid was applied at biologically relevant concentrations to glass fiber disks and leaf disks from red oak trees (Quercus rubra) (L.), a plant species highly favored by these larvae. All eight alkaloids tested on glass fiber disks were deterrent to varying degrees. When these alkaloids were applied to leaf disks, only seven were still deterrent. Of these seven, five were less deterrent on leaf disks compared with glass fiber disks, indicating that their potency was dramatically reduced when they were applied to leaf disks. The reduction in deterrency may be attributed to the phagostimulatory effect of red oak leaves in suppressing the negative deterrent effect of these alkaloids, suggesting that individual alkaloids may confer context-dependent deterrent effects in plants in which they occur. This study provides novel insights into the feeding behavioral responses of insect larvae, such as L. dispar, to selected deterrent alkaloids when applied to natural vs artificial substrates and has the potential to suggest deterrent alkaloids as possible candidates for agricultural use.
Assuntos
Alcaloides , Comportamento Alimentar , Mariposas/fisiologia , Alcaloides/química , Animais , Larva , Mariposas/crescimento & desenvolvimento , Plantas/químicaRESUMO
The external ultrastructure of sensilla on the maxillary galea are investigated in Mamestra configurata and five other lepidopterous larvae using scanning electron microscopy. The galea and lacinia, comprising the mesal lobe of the maxilla, are either completely separate, fused, or incompletely fused in these species. The distal surface of the mesal lobe of all species examined bears two styloconic sensilla, three basiconic sensilla, and three trichoid sensilla, whereas the midventral wall of this lobe bears a campaniform sensillum. The latter sensillum is visible in only three of the six species examined. The styloconic and basiconic sensilla occupy a ventro anterior location, whereas the trichoid sensilla are positioned dorsoposteriorly. Interspecific comparisons of galeal size, as well as sensillar size, shape, and position are made for all species. The styloconic sensilla are the only sensillar type permeable to an aqueous solution of cobalt chloride when viewed by brightfield light microscopy in all species examined. Cobalt ions permeate through the terminal pore of each styloconic peg and percolate through the fenestrated fibrillar pore matrix, located directly below the pore. These ions permeate along the dendritic channel and accumulate in the adjacent sensillar sinus surrounding the peg and/or style by way of a presumably permeable dendritic sheath in all species, but to varying extents. The cuticular sidewall pores surrounding the terminal pore also appear to be permeable to cobalt ions in all the species examined. In most species examined, the styloconic sensilla are only minimally permeable to mercury ions. In these species, mercury ions permeate through the terminal pore, but become trapped within the plug of fenestrated fibrils within it. The sidewall pores are not permeable to mercury ions in any of the species examined. The styloconic sensilla are not permeable to lead ions in M. configurata or Malacosoma lutescens, the only species tested. © 1996 Wiley-Liss, Inc.