Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Small ; 20(9): e2307054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867241

RESUMO

Translation of the unique properties of 2D monolayers from non-scalable micron-sized samples to macroscopic scale is a longstanding challenge obstructed by the substrate-induced strains, interface nonuniformities, and sample-to-sample variations inherent to the scalable fabrication methods. So far, the most successful strategies to reduce strain in graphene are the reduction of the interface roughness and lattice mismatch by using hexagonal boron nitride (h-BN), with the drawback of limited uniformity and applicability to other 2D monolayers, and liquid water, which is not compatible with electronic devices. This work demonstrates a new class of substrates based on hydrogels that overcome these limitations and excel h-BN and water substrates at strain relaxation enabling superiorly uniform and reproducible centimeter-sized sheets of unstrained monolayers. The ultimate strain relaxation and uniformity are rationalized by the extreme structural adaptability of the hydrogel surface owing to its high liquid content and low Young's modulus, and are universal to all 2D materials irrespective of their crystalline structure. Such platforms can be integrated into field effect transistors and demonstrate enhanced charge carrier mobilities in graphene. These results present a universal strategy for attaining uniform and strain-free sheets of 2D materials and underline the opportunities enabled by interfacing them with soft matter.

2.
Small ; 20(38): e2401148, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801400

RESUMO

Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.


Assuntos
Microfluídica , Papel , Microfluídica/métodos , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
3.
Sensors (Basel) ; 23(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571574

RESUMO

This paper investigates the clinical efficacy of an automatic mobile trainer for gait training in stroke patients. Neuro-Developmental Treatment (NDT) is a rehabilitation method for stroke patients that enhances motor learning through repeated practice. Despite the proven effectiveness of therapist-assisted NDT, it is labor-intensive and demands health resources. Therefore, we developed automatic trainers based on NDT principles to perform gait training. This paper modifies the mobile trainer's intervention patterns to improve the subject's longitudinal gait symmetry, lateral pelvic displacement symmetry, and pelvic rotation. We first invited ten healthy subjects to test the modified trainer and then recruited 26 stroke patients to undergo the same gait training. Longitudinal symmetry, lateral symmetry, and pelvic rotation were assessed before, during, and after the intervention. Most subjects show improvements in longitudinal symmetry, lateral symmetry, and pelvic rotation after using the trainer. These results confirm the trainer's effectiveness of the modified intervention schemes in helping clinical gait rehabilitation for stroke patients.


Assuntos
Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Marcha , Terapia por Exercício/métodos , Resultado do Tratamento , Transtornos Neurológicos da Marcha/reabilitação
4.
J Am Chem Soc ; 144(13): 5864-5870, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319205

RESUMO

Colloidal metal halide perovskite (MHP) nanocrystals (NCs) are an emerging class of fluorescent quantum dots (QDs) for next-generation optoelectronics. A great hurdle hindering practical applications, however, is their high lead content, where most attempts addressing the challenge in the literature compromised the material's optical performance or colloidal stability. Here, we present a postsynthetic approach that stabilizes the lead-reduced MHP NCs through high-entropy alloying. Upon doping the NCs with multiple elements in considerably high concentrations, the resulting high-entropy perovskite (HEP) NCs remain to possess excellent colloidal stability and narrowband emission, with even higher photoluminescence (PL) quantum yields, ηPL, and shorter fluorescence lifetimes, τPL. The formation of multiple phases containing mixed interstitial and doping phases is suggested by X-ray crystallography. Importantly, the crystalline phases with higher degrees of lattice expansion and lattice contraction can be stabilized upon high-entropy alloying. We show that the lead content can be approximately reduced by up to 55% upon high-entropy alloying. The findings reported here make one big step closer to the commercialization of perovskite NCs.

5.
Sensors (Basel) ; 22(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36560050

RESUMO

This study investigates gait symmetry and single-leg stance balance of professional yoga instructors versus age-matched typically developed controls using inertial measurement unit (IMU)-based evaluation. We recruited twenty-five yoga instructors and twenty-five healthy control subjects to conduct the walking experiments and single-leg stance tests. Kinematic data were measured by attaching IMUs to the lower limbs and trunk. We assessed the asymmetry of swing phases during the normal-walk and tandem-walk tests with eyes open and closed, respectively. The subjects subsequently conducted four single-leg stance tests, including a single-leg stance on both legs with eyes open and closed. Two balance indexes regarding the angular velocities of the waist and chest were defined to assess postural stability. The gait asymmetry indexes of yoga instructors were significantly lower than those of the typically developed controls. Similarly, the yoga instructors had better body balance in all four single-leg stance tests. This study's findings suggest that yoga improves gait asymmetry and balance ability in healthy adults. In the future, further intervention studies could be conducted to confirm the effect of yoga training.


Assuntos
Yoga , Adulto , Humanos , Equilíbrio Postural , Marcha , Caminhada , Perna (Membro)
6.
Sensors (Basel) ; 21(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800061

RESUMO

This paper develops Deep Neural Network (DNN) models that can recognize stroke gaits. Stroke patients usually suffer from partial disability and develop abnormal gaits that can vary widely and need targeted treatments. Evaluation of gait patterns is crucial for clinical experts to make decisions about the medication and rehabilitation strategies for the stroke patients. However, the evaluation is often subjective, and different clinicians might have different diagnoses of stroke gait patterns. In addition, some patients may present with mixed neurological gaits. Therefore, we apply artificial intelligence techniques to detect stroke gaits and to classify abnormal gait patterns. First, we collect clinical gait data from eight stroke patients and seven healthy subjects. We then apply these data to develop DNN models that can detect stroke gaits. Finally, we classify four common gait abnormalities seen in stroke patients. The developed models achieve an average accuracy of 99.35% in detecting the stroke gaits and an average accuracy of 97.31% in classifying the gait abnormality. Based on the results, the developed DNN models could help therapists or physicians to diagnose different abnormal gaits and to apply suitable rehabilitation strategies for stroke patients.


Assuntos
Inteligência Artificial , Marcha , Acidente Vascular Cerebral , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Acidente Vascular Cerebral/diagnóstico
7.
Nano Lett ; 20(2): 841-851, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31888332

RESUMO

The dielectric constant, which defines the polarization of the media, is a key quantity in condensed matter. It determines several electronic and optoelectronic properties important for a plethora of modern technologies from computer memory to field effect transistors and communication circuits. Moreover, the importance of the dielectric constant in describing electromagnetic interactions through screening plays a critical role in understanding fundamental molecular interactions. Here, we show that despite its fundamental transcendence, the dielectric constant does not define unequivocally the dielectric properties of two-dimensional (2D) materials due to the locality of their electrostatic screening. Instead, the electronic polarizability correctly captures the dielectric nature of a 2D material which is united to other physical quantities in an atomically thin layer. We reveal a long-sought universal formalism where electronic, geometrical, and dielectric properties are intrinsically correlated through the polarizability, opening the door to probe quantities yet not directly measurable including the real covalent thickness of a layer. We unify the concept of dielectric properties in any material dimension finding a global dielectric anisotropy index defining their controllability through dimensionality.

8.
Chemistry ; 26(72): 17604-17612, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32780903

RESUMO

Efficient OLED devices have been fabricated using organometallic complexes of platinum group metals. Still, the high material cost and low stability represent central challenges for their application in commercial display technologies. Based on its innate stability, gold(III) complexes are emerging as promising candidates for high-performance OLEDs. Here, a series of alkynyl-, N-heterocyclic carbene (NHC)- and aryl-gold(III) complexes stabilized by a κ3 -(N^C^C) template have been prepared and their photophysical properties have been characterized in detail. These compounds exhibit good photoluminescence quantum efficiency (ηPL ) of up to 33 %. The PL emission can be tuned from sky-blue to yellowish green colors by variations on both the ancillary ligands as well as on the pincer template. Further, solution-processable OLED devices based on some of these complexes display remarkable emissive properties (ηCE 46.6 cd.A-1 and ηext 14.0 %), thus showcasing the potential of these motifs for the low-cost fabrication of display and illumination technologies.

9.
Nano Lett ; 19(9): 6400-6409, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31429571

RESUMO

Atomically thin porous graphene is emerging as one of the most promising candidates for next-generation membrane material owing to the ultrahigh permeation. However, the transport selectivity relies on the precise control over pore size and shape which considerably compromises the scalability. Here, we study electrolyte permeation through a sheet of large-area, porous graphene, with relatively large pore sizes of 20 ± 10 nm. Counterintuitively, a high degree of salt rejection is observed by electrostatic gating, reducing the diffusive flux by up to 1 order of magnitude. We systematically investigate the effects of salt concentration and species, including developing a theory to model the electrolyte diffusion through a nanopore drilled in a sheet of gated graphene. The interplay between graphene quantum capacitance and the electrical double layer is found to selectively modulate the anionic and cationic transport paths, creating voltage-dependent electrochemical barriers when the pore size is comparable to the Debye length. Our findings reveal a new degree of freedom regulating electrolyte permeation through porous two-dimensional materials, complementary to the pore size design and engineering.

10.
Small ; 14(51): e1804006, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30394008

RESUMO

Enabling mechanical responsiveness in field-effect transistors (FETs) offers new technological opportunity beyond the reach of existing platforms. Here a new force-sensing concept is proposed by controlling the wettability of a semiconductor surface, referring to the interfacial field-effect transistors (IFETs). An IFET made by superhydrophobic semiconductor nanowires (NWs) sandwiched between a layer of 2D electron gas (2DEG) and a conductive Cassie-Baxter (CB) sessile droplet is designed. Following the hydrostatic deformation of the CB droplet upon mechanical stress, an extremely small elastic modulus of 820 pascals vertical to the substrate plane, or ≈100 times softer than Ecoflex rubbers, enabling an excellent stress detection limit down to <10 pascals and a stress sensitivity of 36 kPa-1 is proposed. The IFET exhibits an on/off current ratio exceeding 3 × 104 , as the carrier density profile at the NW/2DEG interface is modulated by a partially penetrated electrostatic field. This study demonstrates a versatile platform that bridges multiple macroscopic interfacial phenomena with nanoelectronic responses.

11.
Small ; 14(28): e1801187, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29882299

RESUMO

Plasmonically coupled graphene structures have shown great promise for sensing applications. Their complex and cumbersome fabrication, however, has prohibited their widespread application and limited their use to rigid, planar surfaces. Here, a plasmonic sensor based on gold nanowire arrays on an elastomer with an added graphene monolayer is introduced. The stretchable plasmonic nanostructures not only significantly enhance the Raman signal from graphene, but can also be used by themselves as a sensor platform for 2D strain sensing. These nanowire arrays on an elastomer are fabricated by template-stripping based nanotransfer printing, which enables a simple and fast production of stable nanogratings. The ultrasmooth surfaces of such transferred structures facilitate reliable large-area transfers of graphene monolayers. The resulting coupled graphene-nanograting construct exhibits ultrahigh sensitivity to applied strain, which can be detected by shifts in the plasmonic-enhanced Raman spectrum. Furthermore, this sensor enables the detection of adsorbed molecules on nonplanar surfaces through graphene-assisted surface enhanced Raman spectroscopy (SERS). The simple fabrication of the plasmonic nanowire array platform and the graphene-coupled devices have the potential to trigger widespread SERS applications and open up new opportunities for high-sensitivity strain sensing applications.

12.
Nano Lett ; 17(9): 5277-5284, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28770603

RESUMO

Pure green light-emitting diodes (LEDs) are essential for realizing an ultrawide color gamut in next-generation displays, as is defined by the recommendation (Rec.) 2020 standard. However, because the human eye is more sensitive to the green spectral region, it is not yet possible to achieve an ultrapure green electroluminescence (EL) with a sufficiently narrow bandwidth that covers >95% of the Rec. 2020 standard in the CIE 1931 color space. Here, we demonstrate efficient, ultrapure green EL based on the colloidal two-dimensional (2D) formamidinium lead bromide (FAPbBr3) hybrid perovskites. Through the dielectric quantum well (DQW) engineering, the quantum-confined 2D FAPbBr3 perovskites exhibit a high exciton binding energy of 162 meV, resulting in a high photoluminescence quantum yield (PLQY) of ∼92% in the spin-coated films. Our optimized LED devices show a maximum current efficiency (ηCE) of 13.02 cd A-1 and the CIE 1931 color coordinates of (0.168, 0.773). The color gamut covers 97% and 99% of the Rec. 2020 standard in the CIE 1931 and the CIE 1976 color space, respectively, representing the "greenest" LEDs ever reported. Moreover, the device shows only a ∼10% roll-off in ηCE (11.3 cd A-1) at 1000 cd m-2. We further demonstrate large-area (3 cm2) and ultraflexible (bending radius of 2 mm) LEDs based on 2D perovskites.

13.
Langmuir ; 33(44): 12827-12837, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29058907

RESUMO

Engineering molecular interactions at two-dimensional (2D) materials interfaces enables new technological opportunities in functional surfaces and molecular epitaxy. Understanding the wettability of 2D materials represents the crucial first step toward quantifying the interplay between the interfacial forces and electric potential of 2D materials interfaces. Here we develop the first theoretical framework to model the wettability of the doped 2D materials by properly bridging the multiscale physical phenomena at the 2D interfaces, including (i) the change of 2D materials surface energy (atomistic scale, several angstroms), (ii) the molecular reorientation of liquid molecules adjacent to the interface (molecular scale, 100-101 nm), and (iii) the electrical double layer (EDL) formed in the liquid phase (mesoscopic scales, 100-104 nm). The latter two effects are found to be the major mechanisms responsible for the contact angle change upon doping, while the surface energy change of a pure 2D material has no net effect on the wetting property. When the doping level is electrostatically tuned, we demonstrate that 2D materials with high quantum capacitances (e.g., transition metal dichalcogenides, TMDCs) possess a wider range of tunability in the interfacial tension, under the same applied gate voltage. Furthermore, practical considerations such as defects and airborne contamination are also quantitatively discussed. Our analysis implies that the doping level can be another variable to modulate the wettability at 2D materials interfaces, as well as the molecular packing behavior on a 2D material-coated surface, essentially facilitating the interfacial engineering of 2D materials.

14.
Inorg Chem ; 56(24): 15304-15313, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29210577

RESUMO

The phosphorescent emitters are essential to realize energy-efficient display and lighting panels. The solution processability is of particular interest for large-scale and low-cost production. Here, we present a series of the heteroleptic iridium (Ir) complexes, Ir(ppy)2L1, Ir(ppy)2L2, and Ir(ppy)2L3, using the new ancillary ligands, including 1-(2-chlorophenyl)-5-hydroxy-3-methyl-1H-pyrazole-4-carbaldehyde (L1), 5-hydroxy-3-methyl-1-(p-tolyl)-1H-pyrazole-4-carbaldehyde (L2), and 5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (L3). Their photophysical and electrochemical properties were systematically characterized, followed by comparing with those predicted by density functional theory simulations using hybrid functionals. Among the three phosphors synthesized, Ir(ppy)2L1 exhibits the highest photoluminescence quantum yield (ΦPL = 89%), with an exciton lifetime of 0.34 µs. By using 4,4'-bis(carbazole-9-yl)biphenyl as the host material, we demonstrate high current efficiencies of 64 and 40 cd A-1 at 100 cd m-2 in its vacuum-evaporated and solution-processed organic light-emitting devices, respectively, revealing the promise for large-area light sources.

15.
Nano Lett ; 16(8): 5044-52, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27409143

RESUMO

Gate-tunable two-dimensional (2D) materials-based quantum capacitors (QCs) and van der Waals heterostructures involve tuning transport or optoelectronic characteristics by the field effect. Recent studies have attributed the observed gate-tunable characteristics to the change of the Fermi level in the first 2D layer adjacent to the dielectrics, whereas the penetration of the field effect through the one-molecule-thick material is often ignored or oversimplified. Here, we present a multiscale theoretical approach that combines first-principles electronic structure calculations and the Poisson-Boltzmann equation methods to model penetration of the field effect through graphene in a metal-oxide-graphene-semiconductor (MOGS) QC, including quantifying the degree of "transparency" for graphene two-dimensional electron gas (2DEG) to an electric displacement field. We find that the space charge density in the semiconductor layer can be modulated by gating in a nonlinear manner, forming an accumulation or inversion layer at the semiconductor/graphene interface. The degree of transparency is determined by the combined effect of graphene quantum capacitance and the semiconductor capacitance, which allows us to predict the ranking for a variety of monolayer 2D materials according to their transparency to an electric displacement field as follows: graphene > silicene > germanene > WS2 > WTe2 > WSe2 > MoS2 > phosphorene > MoSe2 > MoTe2, when the majority carrier is electron. Our findings reveal a general picture of operation modes and design rules for the 2D-materials-based QCs.

16.
Nano Lett ; 15(11): 7587-95, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26496513

RESUMO

Due to the lack of a bandgap, applications of graphene require special device structures and engineering strategies to enable semiconducting characteristics at room temperature. To this end, graphene-based vertical field-effect transistors (VFETs) are emerging as one of the most promising candidates. Previous work attributed the current modulation primarily to gate-modulated graphene-semiconductor Schottky barrier. Here, we report the first experimental evidence that the partially screened field effect and selective carrier injection through graphene dominate the electronic transport at the organic semiconductor/graphene heterointerface. The new mechanistic insight allows us to rationally design graphene VFETs. Flexible organic/graphene VFETs with bending radius <1 mm and the output current per unit layout area equivalent to that of the best oxide planar FETs can be achieved. We suggest driving organic light emitting diodes with such VFETs as a promising application.

17.
Chimia (Aarau) ; 70(11): 800-804, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28661341

RESUMO

This account reviews our recent research activities and achievements in the field of two-dimensional (2D) materials surface chemistry. 2D materials are atomically thin, so that carriers are less-restricted to move in the in-plane direction, whereas the out-of-plain motion is quantum-confined. Semiconductor quantum wells and graphene are two well-known examples. Applications of 2D materials in optoelectronics, surface modification, and complex materials must overcome engineering challenges associated with understanding and engineering surface chemistry of 2D materials, which essentially bridge multiscale physical phenomena. In my research group, we understand and engineer broad aspects of chemistry and physics at nanomaterials surfaces for advancing nanomaterials-based technologies. The three main topics covered in this account are as follows: i) colloidal synthesis of stacking-controlled 2D materials, ii) wetting properties of 2D materials, and iii) engineering electronic transport at 2D materials-semiconductor interfaces.

18.
Nano Lett ; 13(2): 809-17, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23339830

RESUMO

A central question in graphene chemistry is to what extent chemical modification can control an electronically accessible band gap in monolayer and bilayer graphene (MLG and BLG). Density functional theory predicts gaps in covalently functionalized graphene as high as 2 eV, while this approach neglects the fact that lattice symmetry breaking occurs over only a prescribed radius of nanometer dimension, which we label the S-region. Therefore, high chemical conversion is central to observing this band gap in transport. We use an electrochemical approach involving phenyl-diazonium salts to systematically probe electronic modification in MLG and BLG with increasing functionalization for the first time, obtaining the highest conversion values to date. We find that both MLG and BLG retain their relatively high conductivity after functionalization even at high conversion, as mobility losses are offset by increases in carrier concentration. For MLG, we find that band gap opening as measured during transport is linearly increased with respect to the I(D)/I(G) ratio but remains below 0.1 meV in magnitude for SiO(2) supported graphene. The largest transport band gap obtained in a suspended, highly functionalized (I(D)/I(G) = 4.5) graphene is about 1 meV, lower than our theoretical predictions considering the quantum interference effect between two neighboring S-regions and attributed to its population with midgap states. On the other hand, heavily functionalized BLG (I(D)/I(G) = 1.8) still retains its signature dual-gated band gap opening due to electric-field symmetry breaking. We find a notable asymmetric deflection of the charge neutrality point (CNP) under positive bias which increases the apparent on/off current ratio by 50%, suggesting that synergy between symmetry breaking, disorder, and quantum interference may allow the observation of new transistor phenomena. These important observations set definitive limits on the extent to which chemical modification can control graphene electronically.

19.
Lab Chip ; 24(15): 3651-3657, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38952211

RESUMO

Paper-based rapid diagnostic tests (RDTs) are an essential component of modern healthcare, particularly for the management of infectious diseases. Despite their utility, these capillary-driven RDTs are compromised by high failure rates, primarily caused by user error. This limits their utility in complex assays that require multiple user operations. Here, we demonstrate how this issue can be directly addressed through continuous electrochemical monitoring of reagent flow inside an RDT using embedded graphenized electrodes. Our method relies on applying short voltage pulses and measuring variations in capacitive discharge currents to precisely determine the flow times of injected samples and reagents. This information is reported to the user, guiding them through the testing process, highlighting failure cases and ultimately decreasing errors. Significantly, the same electrodes can be used to quantify electrochemical signals from immunoassays, providing an integrated solution for both monitoring assays and reporting results. We demonstrate the applicability of this approach in a serology test for the detection of anti-SARS-CoV-2 IgG in clinical serum samples. This method paves the way towards "smart" RDTs able to continuously monitor the testing process and improve the robustness of point-of-care diagnostics.


Assuntos
COVID-19 , Técnicas Eletroquímicas , Papel , SARS-CoV-2 , Humanos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , COVID-19/diagnóstico , COVID-19/sangue , COVID-19/virologia , Imunoglobulina G/sangue , Imunoglobulina G/análise , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Eletrodos , Imunoensaio/instrumentação , Imunoensaio/métodos , Testes de Diagnóstico Rápido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa