RESUMO
Molybdenum disulfide (MoS2) has been attracting attention for its theoretically outstanding electrical characteristics such as an appropriate bandgap, high mobility, and atomically thin nature. However, when MoS2 is used to fabricate field-effect transistors (FETs), it is difficult to achieve intrinsically good performance due to severe scattering caused by charged impurities (CIs), surface roughness, and surface optical phonons (SOPs). Since SOP scattering is widely acknowledged as the dominant mechanism degrading mobility at room temperature, in this study, we aim to suppress the SOP scattering originating from high-κ oxide dielectrics (such as Al2O3 with a low SOP energy of 48.2 meV), by inserting aluminum nitride (AlN) interfacial layers with a high SOP energy of 81.4 meV. MoS2 FETs with an AlN sandwich structure exhibit higher on-current levels and field-effect mobility by approximately 2.5 and 2.3 times, respectively, compared with Al2O3 sandwiched MoS2 FETs. Furthermore, the suppression of SOP scattering by the AlN interfacial layers can be confirmed by the power-law relationship between temperature and mobility, µâT-γ. As the number of interfaces between MoS2 and AlN increases from 0 to 2, the γ value decreases from 1.3 to 0.12.
RESUMO
The growth control of a molybdenum disulfide (MoS2) thin film, including the number of layers, growth rate, and electrical property modulation, remains a challenge. In this study, we synthesized MoS2 thin films using the metal-organic chemical vapor deposition (MOCVD) method with a 2 inch wafer scale and achieved high thickness uniformity according to the positions on the substrate. In addition, we successfully controlled the number of MoS2 layers to range from one to five, with a growth rate of 10 min per layer. The layer-dependent optical and electrical properties were characterized by photoluminescence, Raman spectroscopy, differential reflectance spectroscopy, and field effect transistors. To guide the growth of MoS2, we summarized the relation between the growth aspects and the precursor control in the form of a growth map. Reference to this growth map enabled control of the growth rate, domain density, and domain size according to the application purposes. Finally, we confirmed the electrical performance of MOCVD-grown MoS2 with five layers under a high-κ dielectric environment, which exhibited an on/off current ratio of 10â¼6 and a maximum field effect mobility of 8.6 cm2 V-1 s-1.
RESUMO
As the need for super-high-resolution displays with various form factors has increased, it has become necessary to produce high-performance thin-film transistors (TFTs) that enable faster switching and higher current driving of each pixel in the display. Over the past few decades, hydrogenated amorphous silicon (a-Si:H) has been widely utilized as a TFT channel material. More recently, to meet the requirement of new types of displays such as organic light-emitting diode displays, and also to overcome the performance and reliability issues of a-Si:H, low-temperature polycrystalline silicon and amorphous oxide semiconductors have partly replaced a-Si:H channel materials. Basic material properties and device structures of TFTs in commercial displays are explored, and then the potential of atomically thin layered transition metal dichalcogenides as next-generation channel materials is discussed.
RESUMO
Two-dimensional (2D) materials including graphene and transition metal dichalcogenides (TMDCs) have attracted great interest as new electronic materials, given their superior properties such as optical transparency, mechanical flexibility, and stretchability, especially for application in next-generation displays. In particular, the integration of graphene and TMDCs enables the implementation of 2D materials-based thin-film transistors (TFTs) in stretchable displays, given that TFTs are the fundamental element of various modern devices. In the present study, we demonstrate chemical-vapor-deposited molybdenum disulfide and graphene-based TFTs on a polymer substrate and investigate the electrical characteristics of TFTs under mechanical deformation to determine the stretchability of our devices. Furthermore, the mechanisms leading to TFT performance degradation are investigated, as they relate to the change in the contact resistance that is closely associated with the relative deformation of 2D materials under mechanical stress. Therefore, the synergetic integration of 2D materials with versatile electrical properties provides an important strategy for creating 2D materials-based stretchable TFTs, thus extending the excellent potential of 2D materials as innovative materials for stretchable active-matrix displays.
RESUMO
We report a simple approach to fabricate a pyridinic-N-doped graphene film (N-pGF) without high-temperature heat treatment from perforated graphene oxide (pGO). pGO is produced by a short etching treatment with hydrogen peroxide. GO perforation predominated in a short etching time (â¼1 h), inducing larger holes and defects compared to pristine GO. The pGO is advantageous to the formation of a pyridinic N-doped graphene because of strong NH3 adsorption on vacancies with oxygen functional groups during the nitrogen-doping process, and the pyridinic-N-doped graphene exhibits good electrocatalytic activity for oxygen reduction reaction (ORR). Using rotating-disk electrode measurements, we confirm that N-pGF undergoes a four-electron-transfer process during the ORR in alkaline and acidic media by possessing sufficient diffusion pathways and readily available ORR active sites for efficient mass transport. A comparison between Pt/N-pGF and commercial Pt/C shows that Pt/N-pGF has superior performance, based on its more positive onset potential and higher limiting diffusion current at -0.5 V.
RESUMO
This study reports a method for the facile and high-yield exfoliation of WX2 (X = S, Se) by sonication under aqueous conditions using single-stranded DNA (abbreviated as ssDNA) of high molecular weight. The ssDNA provided a high degree of stabilization and prevented reaggregation, and it enhanced the exfoliation efficiency of WX2 nanosheets due to adsorption on the WX2 surface and the electrostatic repulsion of sugars in the ssDNA backbone. The exfoliation yield was higher with ssDNA (80%-90%) than without (2%-4%); the yield with ssDNA was also higher than the value previously reported for aqueous exfoliation (â¼10%). Given that two-dimensional nanomaterials have potential health and environmental applications, we investigated antibacterial activity of exfoliated WX2-ssDNA nanosheets, relative to graphene oxide (GO), and found that WSe2-ssDNA nanosheets had higher antibacterial activity against Escherichia coli K-12 MG1655 cells than GO. Our method enables large-scale exfoliation in an aqueous environment in a single step with a short reaction time and under ambient conditions, and it can be used to produce surface-active or catalytic materials that have broad applications in biomedicine and other areas.
Assuntos
Antibacterianos/farmacologia , Calcogênios/farmacologia , DNA/química , Tungstênio/farmacologia , Escherichia coli/efeitos dos fármacos , Grafite , Hidrodinâmica , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta , Análise Espectral RamanRESUMO
We investigated the subdomain structures of single-layer graphene oxide (GO) by characterizing local friction and conductance using conductive atomic force microscopy. Friction and conductance mapping showed that a single-layer GO flake has subdomains several tens to a few hundreds of nanometers in lateral size. The GO subdomains exhibited low friction (high conductance) in the sp(2)-rich phase and high friction (low conductance) in the sp(3)-rich phase. Current-voltage spectroscopy revealed that the local current flow in single-layer GO depends on the quantity of hydroxyl and carboxyl groups, and epoxy bridges within the 2-dimensional carbon layer. The presence of subdomains with different sp(2)/sp(3) carbon ratios on a GO flake was also confirmed by chemical mapping using scanning transmission X-ray microscopy. These results suggest that spatial mapping of the friction and conductance can be used to rapidly identify the composition of heterogeneous single-layer GO at nanometer scale, which is essential for understanding charge transport in nanoelectronic devices.
RESUMO
Layered structures of transition metal dichalcogenides stacked by van der Waals interactions are now attracting the attention of many researchers because they have fascinating electronic, optical, thermoelectric, and catalytic properties emerging at the monolayer limit. However, the commonly used methods for preparing monolayers have limitations of low yield and poor extendibility into large-area applications. Herein, we demonstrate the synthesis of large-area MoSe2 with high quality and uniformity by selenization of MoO3 via chemical vapor deposition on arbitrary substrates such as SiO2 and sapphire. The resultant monolayer was intrinsically doped, as evidenced by the formation of charged excitons under low-temperature photoluminescence analysis. A van der Waals heterostructure of MoSe2 on graphene was also demonstrated. Interestingly, the MoSe2/graphene heterostructures show strong quenching of the characteristic photoluminescence from MoSe2, indicating the rapid transfer of photogenerated charge carriers between MoSe2 and graphene. The development of highly controlled heterostructures of two-dimensional materials will further promote advances in the physics and chemistry of reduced dimensional systems and will provide novel applications in electronics and optoelectronics.