Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Biol Chem ; 296: 100389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33561442

RESUMO

The c-RET proto-oncogene encodes a receptor-tyrosine kinase. Loss-of-function mutations of RET have been shown to be associated with Hirschsprung disease and Down's syndrome (HSCR-DS) in humans. DS is known to involve cerebellar hypoplasia, which is characterized by reduced cerebellar size. Despite the fact that c-Ret has been shown to be associated with HSCR-DS in humans and to be expressed in Purkinje cells (PCs) in experimental animals, there is limited information about the role of activity of c-Ret/c-RET kinase in cerebellar hypoplasia. We found that a loss-of-function mutation of c-Ret Y1062 in PCs causes cerebellar hypoplasia in c-Ret mutant mice. Wild-type mice had increased phosphorylation of c-Ret in PCs during postnatal development, while c-Ret mutant mice had postnatal hypoplasia of the cerebellum with immature neurite outgrowth in PCs and granule cells (GCs). c-Ret mutant mice also showed decreased numbers of glial fibers and mitogenic sonic hedgehog (Shh)-positive vesicles in the external germinal layer of PCs. c-Ret-mediated cerebellar hypoplasia was rescued by subcutaneous injection of a smoothened agonist (SAG) as well as by reduced expression of Patched1, a negative regulator for Shh. Our results suggest that the loss-of-function mutation of c-Ret Y1062 results in the development of cerebellar hypoplasia via impairment of the Shh-mediated development of GCs and glial fibers in mice with HSCR-DS.


Assuntos
Cerebelo/anormalidades , Síndrome de Down/genética , Doença de Hirschsprung/genética , Mutação com Perda de Função , Malformações do Sistema Nervoso/genética , Proteínas Proto-Oncogênicas c-ret/genética , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Modelos Animais de Doenças , Síndrome de Down/complicações , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Técnicas de Introdução de Genes/métodos , Proteínas Hedgehog/metabolismo , Doença de Hirschsprung/complicações , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células de Purkinje/metabolismo , Células de Purkinje/patologia
2.
J Med Virol ; 93(8): 5084-5094, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33599297

RESUMO

Human papillomavirus (HPV) testing with cytology triage for cervical cancer screening has proven to be useful. It is considered that a significant percentage of HPV-positive women followed by reflex cytology have had multiple-type HPV infections rather than single-type infections. However, the effects of multiple-type infections on changes in the cytomorphology of exfoliated cervical cells have not been investigated. The aim of this study was to validate simple manual microdissection (MMD) maneuver and investigate the HPV infection status of single cells isolated from Papanicolaou (Pap) smears prepared from women with multiple-type infections. Using cytology samples from 90 patients with abnormal Pap smear results, we evaluated the efficiency of the MMD procedure and determined the HPV infection status of single squamous intraepithelial lesion (SIL) cells microdissected from patients with multiple-type infection. When validating the MMD procedure, the HPV-positive rate was 81.5% using 119 MMD samples from the Pap smear in 61 cases with single-type infection. This MMD procedure was able to efficiently collect single cells. Of 119 MMD samples from 29 cases with multiple-type infection, the HPV-positive rate was 42.9%, and most (96.1%) MMD samples exhibited only one genotype. Our MMD maneuver successfully identified HPV genotypes using single cells isolated from cytology specimens. A majority of single SIL cells prepared from multiple-type infection cases turned out to contain only one genotype. In the future, the MMD method could be applied while studying the relationship between the morphological changes exhibited by SIL cells on Pap smear and the infected HPV genotype.


Assuntos
Colo do Útero/patologia , Microdissecção/métodos , Infecções por Papillomavirus/patologia , Análise de Célula Única/métodos , Colo do Útero/virologia , Detecção Precoce de Câncer , Feminino , Genótipo , Humanos , Teste de Papanicolaou , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , Reprodutibilidade dos Testes , Lesões Intraepiteliais Escamosas Cervicais/patologia , Lesões Intraepiteliais Escamosas Cervicais/virologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Esfregaço Vaginal
3.
Brain Behav Immun ; 88: 75-87, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32304882

RESUMO

The Psychoneuroimmunology Research Society (PNIRS) created an official Chinese regional affiliate in 2012, designated PNIRSChina. Now, just eight years later, the program has been so successful in advancing the science of psychoneuroimmunology that it has expanded to the whole of Asia-Oceania. In 2017, PNIRSChina became PNIRSAsia-Pacific. Between 2012 and 2019, this outreach affiliate of PNIRS organized seven symposia at major scientific meetings in China as well as nine others in Taiwan, Japan, South Korea, Australia and New Zealand. This paper summarizes the remarkable growth of PNIRSAsia-Pacific. Here, regional experts who have been instrumental in organizing these PNIRSAsia-Pacific symposia briefly review and share their views about the past, present and future state of psychoneuroimmunology research in China, Taiwan, Australia and Japan. The newest initiative of PNIRSAsia-Pacific is connecting Asia-Pacific laboratories with those in Western countries through a simple web-based registration system. These efforts not only contribute to the efforts of PNIRS to serve a truly global scientific society but also to answer the imperative call of increasing diversity in our science.


Assuntos
Psiconeuroimunologia , Ásia , Austrália , China , Japão , República da Coreia , Taiwan
4.
J Allergy Clin Immunol ; 143(3): 978-989.e3, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30315829

RESUMO

BACKGROUND: Rhinitis and rhinosinusitis are olfactory disorders caused by inflammation of the nasal passage and paranasal sinuses. Although patients with chronic rhinosinusitis have smaller olfactory bulbs (OBs), there is limited knowledge regarding the influence of chronic nasal inflammation on OB neurons. OBJECTIVE: Repeated intranasal administration of LPS that induced persistent nasal inflammation in mice caused a loss of olfactory sensory neurons (OSNs) and gliosis and synaptic loss in the OBs within 3 weeks. The present study aimed to clarify the effects of long-term LPS treatment on the OB neurocircuit. METHODS: LPS was repeatedly administered into a mouse nostril for up to 24 weeks. For the recovery analyses, the mice received LPS for 10 weeks and were subsequently maintained without additional treatment for another 10 weeks. The effects of these treatments on the OBs were examined histologically. Three or more mice were analyzed per group. RESULTS: Long-term repeated LPS administration caused OB atrophy, particularly in the layers along which OSN axons travel and in the superficial external plexiform layer, in which tufted cells form synapses with interneurons. Interestingly, the OBs recovered from atrophy after cessation of LPS administration: OB volume and superficial external plexiform layer thickness returned to pretreatment levels after the nontreatment period. In contrast, OSN regeneration was incomplete. CONCLUSION: These results suggest that chronic nasal inflammation induces structural changes in a specific OB circuit related to tufted cells, whereas tufted cells retain a high degree of plasticity that enables recovery from structural damages after inflammation subsides.


Assuntos
Lipopolissacarídeos/administração & dosagem , Plasticidade Neuronal/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Administração Intranasal , Animais , Inflamação/patologia , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Cavidade Nasal/patologia , Bulbo Olfatório/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Sinapses/efeitos dos fármacos
5.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379343

RESUMO

By comprehensively measuring changes in metabolites in the hippocampus of stress-loaded mice, we investigated the reasons for stress vulnerability and the effect of theanine, i.e., an abundant amino acid in tea leaves, on the metabolism. Stress sensitivity was higher in senescence-accelerated mouse prone 10 (SAMP10) mice than in normal ddY mice when these mice were loaded with stress on the basis of territorial consciousness in males. Group housing was used as the low-stress condition reference. Among the statistically altered metabolites, depression-related kynurenine and excitability-related histamine were significantly higher in SAMP10 mice than in ddY mice. In contrast, carnosine, which has antidepressant-like activity, and ornithine, which has antistress effects, were significantly lower in SAMP10 mice than in ddY mice. The ingestion of theanine, an excellent antistress amino acid, modulated the levels of kynurenine, histamine, and carnosine only in the stress-loaded SAMP10 mice and not in the group-housing mice. Depression-like behavior was suppressed in mice that had ingested theanine only under stress loading. Taken together, changes in these metabolites, such as kynurenine, histamine, carnosine, and ornithine, were suggested to be associated with the stress vulnerability and depression-like behavior of stressed SAMP10 mice. It was also shown that theanine action appears in the metabolism of mice only under stress loading.


Assuntos
Depressão/tratamento farmacológico , Glutamatos/uso terapêutico , Hipocampo/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Animais , Arginase/metabolismo , Camellia sinensis , Avaliação Pré-Clínica de Medicamentos , Glutamatos/farmacologia , Hipocampo/metabolismo , Histidina Descarboxilase/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Fitoterapia , Estresse Psicológico/metabolismo , Triptofano Oxigenase/metabolismo
6.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759773

RESUMO

Senescence-accelerated mouse prone 10 (SAMP10) exhibits cerebral atrophy and depression-like behavior. A line of SAMP10 with spontaneous mutation in the Slc5a2 gene encoding the sodium-glucose cotransporter (SGLT) 2 was named SAMP10/TaSlc-Slc5a2slc (SAMP10-ΔSglt2) and was identified as a renal diabetes model. In contrast, a line of SAMP10 with no mutation in SGLT2 (SAMP10/TaIdrSlc, SAMP10(+)) was recently established under a specific pathogen-free condition. Here, we examined the mutation effect in SGLT2 on brain function and longevity. No differences were found in the survival curve, depression-like behavior, and age-related brain atrophy between SAMP10-ΔSglt2 and SAMP10(+). However, memory retention was lower in SAMP10-ΔSglt2 mice than SAMP10(+). Amyloid beta (A4) precursor-like protein 1 (Aplp1) expression was significantly lower in the hippocampus of SAMP10-ΔSGLT2 than in SAMP10(+) at 2 months of age, but was similar at 12 months of age. CaM kinase-like vesicle association (Camkv) expression was remarkably lower in SAMP10(+). These genes have been reported to be involved in dendrite function. Amyloid precursor proteins have been reported to involve in maintaining homeostasis of glucose and insulin. These results suggest that mutation in SGLT2 results in down-regulation of Aplp1 in young age, which can lead to poor memory retention in old age.


Assuntos
Envelhecimento/genética , Precursor de Proteína beta-Amiloide/genética , Transtornos da Memória/genética , Doenças Neurodegenerativas/genética , Transportador 2 de Glucose-Sódio/genética , Fatores Etários , Envelhecimento/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Senescência Celular/genética , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Humanos , Memória/fisiologia , Transtornos da Memória/patologia , Camundongos , Mutação/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Sinapsinas/metabolismo
7.
Biochem Biophys Res Commun ; 454(1): 89-94, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25450362

RESUMO

The senescence-accelerated mouse prone10 (SAMP10) strain, a model of aging, exhibits cognitive impairments and cerebral atrophy. We noticed that SAMP10/TaSlc mice, a SAMP10 substrain, have developed persistent glucosuria over the past few years. In the present study, we characterized SAMP10/TaSlc mice and further identified a spontaneous mutation in the Slc5a2 gene encoding sodium-glucose co-transporter (SGLT) 2. The mean concentration of urine glucose was high in SAMP10/TaSlc mice and increased further with advancing age, whereas other strains of senescence-accelerated mice, including SAMP1/SkuSlc, SAMP6/TaSlc and SAMP8/TaSlc or normal aging control SAMR1/TaSlc mice, exhibited no detectable glucose in urine. SAMP10/TaSlc mice consumed increasing amounts of food and water compared to SAMR1/TaSlc mice, suggesting the compensation of polyuria and the loss of glucose. Oral glucose tolerance tests showed decreased glucose reabsorption in the kidney of SAMP10/TaSlc mice. In addition, blood glucose levels decreased in an age-dependent fashion. The kidney was innately larger than that of control mice with no histological alterations. We examined the expression levels of glucose transporters in the kidney. Among SGLT1, SGLT2, glucose transporter (GLUT) 1 and GLUT2, we found a significant decrease only in the level of SGLT2. DNA sequencing of SGLT2 in SAMP10/TaSlc mice revealed a single nucleotide deletion of guanine at 1236, which resulted in a frameshift mutation that produced a truncated protein. We designate this strain as SAMP10/TaSlc-Slc5a2(slc) (SAMP10-ΔSglt2). Recently, SGLT2 inhibitors have been demonstrated to be effective for the treatment of patients with type 2 diabetes (T2D). SAMP10-ΔSglt2 mice may serve as a unique preclinical model to study the link between aging-related neurodegenerative disorders and T2D.


Assuntos
Envelhecimento/genética , Mutação da Fase de Leitura , Transportador 2 de Glucose-Sódio/genética , Envelhecimento/metabolismo , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Glicemia/metabolismo , Códon de Terminação/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Humanos , Rim/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/química , Transportador 2 de Glucose-Sódio/metabolismo
8.
Neuropathology ; 34(1): 49-57, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23711246

RESUMO

Niemann-Pick disease type C (NPC) is an autosomal recessive neurovisceral lipid storage disorder. Two disease-causing genes (NPC1 and NPC2) have been identified. NPC is characterized by neuronal and glial lipid storage and NFTs. Here, we report a man with juvenile-onset progressive neurological deficits, including pyramidal signs, ataxia, bulbar palsy, vertical supranuclear ophthalmoplegia, and psychiatric symptoms; death occurred at age 37 before definitive clinical diagnosis. Post mortem gross examination revealed a unique distribution of brain atrophy, predominantly in the frontal and temporal lobes. Microscopically, lipid storage in neurons and widely distributed NFTs were observed. Lipid storage cells appeared in systemic organs and filipin staining indicated intracellular cholesterol accumulation in hepatic macrophages. Electron microscopy revealed accumulation of lipids and characteristic oligolamellar inclusions. These findings suggested an NPC diagnosis. Neuronal loss and gliosis were frequently accompanied by NFTs and occurred in the frontal and temporal cortices, hippocampus, amygdala, basal forebrain, basal ganglia, thalamus, substantia nigra and brain stem nuclei. Lewy bodies (LBs) were observed in most, but not all, regions where NFTs were evident. In contrast, neuronal lipid storage occurred in more widespread areas, including the parietal and occipital cortices where neurodegeneration with either NFTs or LBs was minimal. Molecular genetic analysis demonstrated that the patient had compound heterozygous mutations in the cysteine-rich loop (A1017T and Y1088C) of the NPC1 gene. To our knowledge there has been no previous report of the A1017T mutation. The pathological features of this patient support the notion that NPC has an aspect of α-synucleinopathy, and long-term survivors of NPC may develop a frontotemporal-predominant distribution of brain atrophy.


Assuntos
Doença de Niemann-Pick Tipo C/patologia , Adulto , Tronco Encefálico/patologia , Proteínas de Transporte/genética , Córtex Cerebral/patologia , Lobo Frontal/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Corpos de Lewy/patologia , Masculino , Glicoproteínas de Membrana/genética , Mutação , Emaranhados Neurofibrilares/patologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/genética , Lobo Temporal/patologia
9.
BMC Genomics ; 14: 248, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23586671

RESUMO

BACKGROUND: Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Although SAMP strains have been widely used for aging research focusing on their short life spans and various age-related phenotypes, such as immune dysfunction, osteoporosis, and brain atrophy, the responsible gene mutations have not yet been fully elucidated. RESULTS: To identify mutations specific to SAMP strains, we performed whole exome sequencing of 6 SAMP and 3 SAMR strains. This analysis revealed 32,019 to 38,925 single-nucleotide variants in the coding region of each SAM strain. We detected Ogg1 p.R304W and Mbd4 p.D129N deleterious mutations in all 6 of the SAMP strains but not in the SAMR or AKR/J strains. Moreover, we extracted 31 SAMP-specific novel deleterious mutations. In all SAMP strains except SAMP8, we detected a p.R473W missense mutation in the Ldb3 gene, which has been associated with myofibrillar myopathy. In 3 SAMP strains (SAMP3, SAMP10, and SAMP11), we identified a p.R167C missense mutation in the Prx gene, in which mutations causing hereditary motor and sensory neuropathy (Dejerine-Sottas syndrome) have been identified. In SAMP6 we detected a p.S540fs frame-shift mutation in the Il4ra gene, a mutation potentially causative of ulcerative colitis and osteoporosis. CONCLUSIONS: Our data indicate that different combinations of mutations in disease-causing genes may be responsible for the various phenotypes of SAMP strains.


Assuntos
Envelhecimento/genética , Doença/genética , Exoma/genética , Genômica , Mutação/genética , Análise de Sequência , Sequência de Aminoácidos , Animais , Sequência de Bases , Éxons/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Fenótipo , Especificidade da Espécie
10.
Brain Behav Immun ; 29: 82-97, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23270678

RESUMO

Although the immune system modulates higher functions of the brain under non-inflammatory conditions, how immune cells interact with brain parenchymal cells remains to be determined. Using bone marrow chimeric mice in which the recipients' immune system was reconstituted by marrow cells derived from GFP-transgenic mice by syngeneic intra-bone marrow-bone marrow transplantation (IBM-BMT) and by intravenous (IV)-BMT, we examined the distribution, density and differentiation of donor-derived marrow cells in the brain parenchyma 2 weeks and 1, 4 and 8 months after BMT. Marrow-derived cells started to populate discrete brain regions from 1 to 4 months after BMT, exhibited ramified morphology and expressed Iba-1. The ramified marrow-derived cells were distributed in more brain regions and for a longer time after IBM-BMT than IV-BMT. Most of these discrete regions were adjacent to the attachments of choroid plexus that comprised thinned brain parenchyma consisting of astroglial processes in the narrow channel between the ependyma and pia. These specific portions of astroglial processes expressed fractalkine. In the choroid plexus stroma, not only Iba-1+ myeloid cells but also non-myeloid CXCL12-expressing cells were of bone marrow-origin. Transcripts of fractalkine, CXCL12 and their related molecules such as CX3CR1, ADAM10 and CXCR4 were detected in the tissue consisting of the choroid plexus, the attachments and adjacent brain parenchyma. Thus, bone marrow cells selectively enter the discrete brain regions adjacent to the attachments of choroid plexus and differentiate into ramified myeloid cells. Fractalkine in the attachments of choroid plexus and CXCL12 in the choroid plexus stroma may be involved in these brain-immune interactions.


Assuntos
Células da Medula Óssea/fisiologia , Encéfalo/citologia , Plexo Corióideo/citologia , Animais , Transplante de Medula Óssea/imunologia , Proteínas de Ligação ao Cálcio/biossíntese , Diferenciação Celular , Separação Celular , Quimiocina CX3CL1/biossíntese , Quimiocina CX3CL1/genética , Quimiocina CXCL12/biossíntese , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Masculino , Meninges/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/biossíntese , Células Mieloides/fisiologia , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
Proc Natl Acad Sci U S A ; 107(29): 13051-6, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20616061

RESUMO

A significantly increased risk for dominant sensorineural deafness in patients who have Hirschsprung disease (HSCR) caused by endothelin receptor type B and SOX10 has been reported. Despite the fact that c-RET is the most frequent causal gene of HSCR, it has not been determined whether impairments of c-Ret and c-RET cause congenital deafness in mice and humans. Here, we show that impaired phosphorylation of c-Ret at tyrosine 1062 causes HSCR-linked syndromic congenital deafness in c-Ret knockin (KI) mice. The deafness involves neurodegeneration of spiral ganglion neurons (SGNs) with not only impaired phosphorylation of Akt and NF-kappaB but decreased expression of calbindin D28k in inner ears. The congenital deafness involving neurodegeneration of SGNs in c-Ret KI mice was rescued by introducing constitutively activated RET. Taken together with our results for three patients with congenital deafness with c-RET-mediated severe HSCR, our results indicate that c-Ret and c-RET are a deafness-related molecule in mice and humans.


Assuntos
Perda Auditiva/complicações , Perda Auditiva/enzimologia , Doença de Hirschsprung/complicações , Doença de Hirschsprung/enzimologia , Proteínas Proto-Oncogênicas c-ret/metabolismo , Substituição de Aminoácidos/genética , Animais , Surdez/complicações , Surdez/enzimologia , Ativação Enzimática , Técnicas de Introdução de Genes , Perda Auditiva/congênito , Imuno-Histoquímica , Camundongos , Mutação/genética , NF-kappa B/metabolismo , Degeneração Neural/enzimologia , Degeneração Neural/patologia , Neurônios/enzimologia , Neurônios/patologia , Neurônios/ultraestrutura , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Gânglio Espiral da Cóclea/enzimologia , Gânglio Espiral da Cóclea/patologia , Gânglio Espiral da Cóclea/ultraestrutura
12.
Toxicol Rep ; 9: 1380-1390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518431

RESUMO

Systemic inflammation affects brain functions. In our previous study in which lipopolysaccharide (LPS) was injected intraperitoneally into mice at sublethal doses, choroid plexus macrophages produced interleukin-1ß and stimulated neighboring stromal cells. Activated stromal cells stimulate choroid plexus epithelial cells, and then choroid plexus epithelium-derived cytokines enter the brain parenchyma and stimulate astrocytes. Stimulated astrocytes then produce cytokines such as CCL11, CXCL10 and G-CSF and change the brain parenchymal microenvironment. However, the effects of an altered brain microenvironment on other brain cells remain to be determined. In the present study, we hypothesized that microglia are activated in response to astrocyte-induced changes in the brain microenvironment. Using the brains of mice treated with intraperitoneal LPS injection, Luminex multiplex cytokine immunoassays revealed increased hippocampal concentrations of CCL11, CXCL10 and G-CSF at 48 h after systemic LPS challenge. The concentrations of all cytokines examined returned to control levels at 72 h after LPS injection, which indicated a resolution of the neuroinflammation. Immunohistochemistry revealed that microglia were hypertrophied in mice at 48 h after systemic LPS challenge. Following isolation of microglial cells from the brain using magnetic-activated cell sorting, gene expression assays were performed with real-time reverse transcriptase-polymerase chain reaction. Isolated microglial cells exhibited much higher gene expression of the receptors for CCL11, CXCL10 and G-CSF than other brain cells. Microglial cells isolated from the brains of mice at 48 h after systemic LPS challenge exhibited the M2-like phenotype. In conclusion, microglial hypertrophy occurs following astrocytic reactions in a mouse model of sublethal endotoxemia-induced systemic inflammation, and hypertrophic microglia are polarized toward the M2-like phenotype and involved in the resolution of neuroinflammation.

13.
J Neuroimmunol ; 368: 577897, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35661951

RESUMO

Chronic nasal inflammation induces robust olfactory bulb (OB) atrophy in mice. Here we examined initial events that occur in the OB after bilateral intranasal administration of lipopolysaccharide, focusing on the olfactory nerve fibers and meninges. We analyzed the time course of OB and meninges inflammation using histological and biochemical approaches. Within 12 h, we observed increased chemokine expression and transient infiltration of peripheral immune cells into the OB, resulting in the development of pro-inflammatory status in the OB. Meningeal immunity was activated. Resident microglia produced anti-inflammatory cytokines within 24 h. These could be the initial events that lead to OB atrophy.


Assuntos
Lipopolissacarídeos , Bulbo Olfatório , Animais , Atrofia/patologia , Modelos Animais de Doenças , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia
14.
Neurobiol Dis ; 43(3): 706-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21669285

RESUMO

Excitotoxicity is involved in seizure-induced acute neuronal death, hypoxic-ischemic encephalopathy, and chronic neurodegenerative conditions such as Alzheimer's disease. Although oxidative stress has been implicated in excitotoxicity, the target proteins of oxidative damage during the course of excitotoxic cell death are still unclear. In the present study, we performed 2D-oxyblot analysis and mass spectrometric amino acid sequencing to identify proteins that were vulnerable to oxidative damage in the rat hippocampus during kainic acid (KA)-induced status epilepticus. We first investigated the time course in which oxidative protein damage occurred using immunohistochemistry. Carbonylated proteins, a manifestation of protein oxidation, were detected in hippocampal neurons as early as 3h after KA administration. Immunoreactivity for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was also elevated at the same time point. The increase in oxidative damage to proteins and DNA occurred concomitantly with the early morphological changes in KA-treated rat hippocampus, i.e., changes in chromatin distribution and swelling of rough endoplasmic reticulum and mitochondria, which preceded the appearance of morphological features of neuronal death such as pyknotic nuclei and hypereosinophilic cytoplasm. Proteomic analysis revealed that several hippocampal proteins were consistently carbonylated at this time point, including heat shock 70kDa protein 4, valosin-containing protein, mitochondrial inner membrane protein (mitofilin), α-internexin, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (14-3-3 protein). We propose that oxidative damage to these proteins may be one of the upstream events in the molecular pathway leading to excitotoxic cell death in KA-treated rat hippocampus, and these proteins may be targets of therapeutic intervention for seizure-induced neuronal death.


Assuntos
Hipocampo/metabolismo , Hipocampo/patologia , Neurotoxinas/toxicidade , Estresse Oxidativo/fisiologia , Proteômica/métodos , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Doença Aguda , Animais , Morte Celular/fisiologia , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Ácido Caínico/toxicidade , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar
15.
J Exp Med ; 202(6): 853-63, 2005 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16172262

RESUMO

Experimental allergic encephalomyelitis (EAE) serves as a model for multiple sclerosis and is considered to be a CD4+ Th1 cell-mediated autoimmune disease. To investigate the role of platelet-activating factor (PAF) in this disease, PAF receptor (PAFR) KO (PAFR-KO) and wild-type (WT) mice, on a C57BL/6 genetic background, were immunized with myelin oligodendrocyte glycoprotein 35-55. The levels of PAF production and PAFR mRNA expression in the spinal cord (SC) correlated with the EAE symptoms. PAFR-KO mice showed lower incidence and less severe symptoms in the chronic phase of EAE than WT mice. However, no difference was observed in T cell proliferation, Th1-cytokine production, or titer of IgG2a between both genotypes. Before onset, as revealed by microarray analysis, mRNAs of inflammatory mediators and their receptors-including IL-6 and CC chemokine receptor 2-were down-regulated in the SC of PAFR-KO mice compared with WT mice. Moreover, in the chronic phase, the severity of inflammation and demyelination in the SC was substantially reduced in PAFR-KO mice. PAFR-KO macrophages reduced phagocytic activity and subsequent production of TNF-alpha. These results suggest that PAF plays a dual role in EAE pathology in the induction and chronic phases through the T cell-independent pathways.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Fator de Ativação de Plaquetas/fisiologia , Sequência de Aminoácidos , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Glicoproteínas/genética , Glicoproteínas/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Glicoproteína Mielina-Oligodendrócito , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fagocitose/fisiologia , Glicoproteínas da Membrana de Plaquetas/biossíntese , Glicoproteínas da Membrana de Plaquetas/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Medula Espinal/metabolismo
16.
Brain Behav Immun ; 25(1): 83-100, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20804842

RESUMO

Aging is a result of damage accumulation, and understanding of the mechanisms of aging requires exploration of the cellular and molecular systems functioning to control damage. Senescence-accelerated mouse prone 10 (SAMP10) has been established as an inbred strain exhibiting accelerated aging with an earlier onset of cognitive impairment due to neurodegeneration than the senescence-resistant control (SAMR1) strain. We hypothesized that tissue-protective responses of glial cells are impaired in SAMP10 mice. We injected kainic acid (KA) to induce hippocampal injury and studied how cytokines were upregulated on Day 3 using 3-month-old SAMP10 and SAMR1 mice. Following microarray-based screening for upregulated genes, we performed real-time RT-PCR and immunohistochemistry. Results indicated well-orchestrated cytokine-mediated glial interactions in the injured hippocampus of SAMR1 mice, in which microglia-derived interferon (IFN)-γ stimulated astrocytes via IFN-γ receptor and thereby induced expression of CXCL10 and macrophage inflammatory protein (MIP)-1α, and activated microglia produced granulocyte-macrophage colony-stimulating factor (GM-CSF) and osteopontin (OPN). OPN was the most strongly upregulated cytokine. CD44, an OPN receptor, was also strongly upregulated in the neuropil, especially on neurons and astrocytes. KA-induced hippocampal upregulation of these cytokines was strikingly reduced in SAMP10 mice compared to SAMR1 mice. On Day 30 after KA injection, SAMP10 but not SAMR1 mice exhibited hippocampal layer atrophy. Since the OPN-CD44 system is essential for neuroprotection and remodeling, these findings highlight the defects of SAMP10 mice in cytokine-mediated neuroprotective glia-neuron interactions, which may be associated with the mechanism underlying the vulnerability of SAMP10 mice to age-related neurodegeneration.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Citocinas/fisiologia , Hipocampo/patologia , Neuroglia/fisiologia , Neurotoxinas/toxicidade , Animais , Astrócitos/fisiologia , Tamanho Celular , Expressão Gênica/efeitos dos fármacos , Receptores de Hialuronatos/imunologia , Imuno-Histoquímica , Ácido Caínico/toxicidade , Camundongos , Camundongos Mutantes Neurológicos , Microglia/imunologia , Microglia/patologia , Neurônios/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Regulação para Cima/genética , Regulação para Cima/fisiologia
17.
Neuropathology ; 31(1): 20-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20497341

RESUMO

The ageing brain is characterized by degenerative changes in both neurons and glia. Although neurons are known to lose dendritic complexity with ageing, age-related changes in the morphology of microglia have not been well documented. We investigated potential age-related changes in microglial morphology using mouse models. Senescence-accelerated mouse prone 10 (SAMP10) in which neuronal degeneration begins to appear around 8 months of age and becomes progressively remarkable with advancing age was used as a model of brain ageing. Senescence-accelerated mouse resistant 1 (SAMR1) in which age-related neuronal changes are inconspicuous was used as usual-ageing controls. Hippocampal sections prepared from 3-, 8- and 14-month-old SAMP10 and 3-, 8-, 14- and 24-month-old SAMR1 mice were stained immunohistochemically with anti-Iba-1 antibody to highlight microglia. Stick figures of individual microglia reflecting the length and complexity of cytoplasmic processes were made by camera lucida drawing. Parameters representing morphological features of microglia were quantified using an image analyzer: area of convex closure, cell body area, number of primary processes, maximal branch order, combined projection length, number of segments and number of tips. Pathological changes of processes such as beading and clusters of fragmented twigs were counted. In microglia of 3- and 8-month-old SAMP10 mice, combined projection length was shorter and numbers of segments and tips were smaller than those in age-matched SAMR1 mice. Similar changes were detected in SAMR1 mice at age 14 months and older. Microglia of SAMP10 mice at all ages were characterized by having frequent pathological changes in processes, which were not remarkable in SAMR1 mice at any age. These morphological abnormalities in microglia of SAMP10 mice preceded the onset of neuronal degeneration and may lead to making brain tissue less protective to neurons. We propose that preceding abnormalities in microglia may contribute to the vulnerability to age-related neuronal degeneration in SAMP10 mice.


Assuntos
Envelhecimento/patologia , Hipocampo/patologia , Microglia/patologia , Degeneração Neural/patologia , Neurônios/patologia , Animais , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Camundongos , Camundongos Mutantes
18.
Toxicol Rep ; 8: 520-528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747797

RESUMO

Sepsis-associated encephalopathy (SAE) is characterized as diffuse brain dysfunction in patients with excessive systemic inflammatory reaction to an infection. In our previous studies using a mouse model of SAE with intraperitoneal injection of lipopolysaccharide (LPS), tissue concentrations of various cytokines were elevated in the entire brain parenchyma 4 and 24 h following LPS administration. Cytokines elevated at 4 h were produced by the choroid plexus, leptomeninges and vascular endothelium, while those at 24 h were produced by astrocytes. Interleukin (IL)-1ß did not increase in the concentration in the brain parenchyma during the period from 1 to 24 h following LPS. In the present study, we hypothesized that the intracranial cells that initially respond to systemic inflammation are situated in the choroid plexus and produce IL-1ß to initiate cytokine-mediated reactions. We quantified the transcript levels of related cytokines within the choroid plexus and specified the choroid plexus cells that are involved in the immediate cytokine-mediated responses. Mice received LPS or saline by intraperitoneal injection. Four hours after treatments, the choroid plexuses were isolated and subjected to cytokine gene expression analyses using real-time reverse transcription-polymerase chain reaction. Another group of mice was fixed at 1, 4 and 24 h after treatments and the expression of cytokines and receptors was studied with double immunohistofluorescence staining. The transcript levels of IL-1ß, CC-motif ligand (CCL)2, CXC-motif ligand (CXCL)1, CXCL2 and IL-6 in the choroid plexus were significantly increased in mice treated with LPS compared to saline control. The IL-1ß expression was remarkable in choroid plexus macrophages at 1 and 4 h but not in the brain parenchyma. Choroid plexus stromal cells expressed IL-1 receptor type 1 (IL-1R1). The IL-1R1-bearing stromal cells produced CCL2, CXCL1, CXCL2 and IL-6 at 4 h. Choroid plexus epithelial cells expressed CXCR2, a common receptor for CXCL1 and CXCL2. Choroid plexus epithelial cells also expressed CCL2, CXCL1 and CXCL2 at 4 h, and IL-1R1-bearing stromal cells expressed CXCR2. Therefore, in response to systemic LPS injection, one of the intracranial reactions was initiated within the choroid plexus using IL-1ß derived from macrophages. The choroid plexus stromal cells subsequently had elevated expression of CCL2, CXCL1, CXCL2 and IL-6. The choroid plexus epithelial cells also had elevated expression of CCL2, CXCL1 and CXCL2. The presence of receptors for these cytokines on both epithelial and stromal cells raised the possibility of reciprocal interactions between these cells. The results suggested that the immediate early responses exerted by the choroid plexus are relevant to understanding how SAE is initiated in clinical settings.

19.
Sci Rep ; 11(1): 4640, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633180

RESUMO

A growing body of evidence suggests a relationship between olfactory dysfunction and the pathogenesis of mental disorders. Our previous studies indicated that chronic nasal inflammation caused loss of olfactory sensory neurons and gross atrophy of the olfactory bulb, which may lead to olfactory dysfunction. Simultaneously, increasing numbers of reports have elucidated the importance of gut microbiota to maintain brain function and that dysbiosis may be associated with neuropsychiatric disorders. Here we examined whether chronic nasal inflammation perturbed gut microbiota and whether there were sex differences in this pattern. Eight-week-old C57BL/6 mice repeatedly received bilateral nasal administration of lipopolysaccharide (LPS) 3 times/week to cause chronic nasal inflammation or saline as a control. At 9 weeks, cecal feces were used for 16S metagenomic analysis and whole blood and fresh tissue of spleen were used for ELISA analyses. Microbiome analysis demonstrated a remarkable change of the gut microbiota in male mice with chronic nasal inflammation which was different from that in female mice. In both mice, systemic inflammation did not occur. This has shown for the first time that chronic nasal inflammation correlates with sex-dependent changes in the gut microbiota. The detailed mechanism and potential alteration to brain functions await further studies.


Assuntos
Microbioma Gastrointestinal , Inflamação/patologia , Mucosa Nasal/patologia , Fatores Sexuais , Animais , Doença Crônica , Feminino , Masculino , Camundongos
20.
PLoS One ; 16(4): e0250856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914812

RESUMO

Glycolytic metabolism is closely involved in physiological homeostasis and pathophysiological states. Among glycolytic enzymes, phosphoglycerate mutase (PGAM) has been reported to exert certain physiological role in vitro, whereas its impact on glucose metabolism in vivo remains unclear. Here, we report the characterization of Pgam1 knockout mice. We observed that homozygous knockout mice of Pgam1 were embryonic lethal. Although we previously reported that both PGAM-1 and -2 affect global glycolytic profile of cancers in vitro, in vivo glucose parameters were less affected both in the heterozygous knockout of Pgam1 and in Pgam2 transgenic mice. Thus, the impact of PGAM on in vivo glucose metabolism is rather complex than expected before.


Assuntos
Genes Letais , Glucose/metabolismo , Fosfoglicerato Mutase/genética , Animais , Técnicas de Inativação de Genes , Glicólise , Perda de Heterozigosidade , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa