RESUMO
Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.
Assuntos
Tamanho Corporal/genética , Proteínas de Peixes/metabolismo , Morfogênese/genética , Oryzias/anatomia & histologia , Oryzias/embriologia , Actomiosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Proteínas de Peixes/genética , Proteínas Ativadoras de GTPase/metabolismo , Genes Essenciais/genética , Gravitação , Humanos , Mutação/genética , Tamanho do Órgão/genética , Oryzias/genética , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Esferoides Celulares/citologia , Esferoides Celulares/metabolismoRESUMO
We have developed a convenient multicolor fluorescent in situ hybridization (FISH) (five-, four-, three-, and two-color FISHs) for detecting specific genes/DNA segments on the human chromosomes. As a foundation of multicolor FISH, we first isolated 80 bacterial artificial chromosome (BAC) probes that specifically detect the peri-centromeres (peri-CEN) and subtelomeres (subTEL) of 24 different human chromosomes (nos. 1~22, X, and Y) by screening our homemade BAC library (Keio BAC library) consisting of 200,000 clones. Five-color FISH was performed using human DNA segments specific for peri-CEN or subTEL, which were labeled with five different fluorescent dyes [7-diethylaminocoumarin (DEAC): blue, fluorescein isothiocyanate (FITC): green, rhodamine 6G (R6G): yellow, TexRed: red, and cyanine5 (Cy5): purple]. To observe FISH signals under a fluorescence microscope, five optic filters were carefully chosen to avoid overlapping fluorescence emission. Five-color FISH and four-color FISH enabled us to accurately examine the numerical anomaly of human chromosomes. Three-color FISH using two specific BAC clones, that distinguish 5' half of oncogene epidermal growth factor receptor (EGFR) from its 3' half, revealed the amplification and truncation of EGFR in EGFR-overproducing cancer cells. Moreover, two-color FISH readily detected a fusion gene in leukemia cells such as breakpoint cluster region (BCR)/Abelson murine leukemia viral oncogene homologue (ABL) on the Philadelphia (Ph') chromosome with interchromosomal translocation. Some other successful cases such as trisomy 21 of Down syndrome are presented. Potential applications of multicolor FISH will be discussed.
Assuntos
Cromossomos Humanos , Hibridização in Situ Fluorescente/métodos , Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Cromossomos Artificiais Bacterianos , Sondas de DNA , Biblioteca Genômica , Humanos , Microscopia de Fluorescência por Excitação Multifotônica , Coloração e RotulagemRESUMO
Lists of variations in genomic DNA and their effects have been kept for some time and have been used in diagnostics and research. Although these lists have been carefully gathered and curated, there has been little standardization and coordination, complicating their use. Given the myriad possible variations in the estimated 24,000 genes in the human genome, it would be useful to have standard criteria for databases of variation. Incomplete collection and ascertainment of variants demonstrates a need for a universally accessible system. These and other problems led to the World Heath Organization-cosponsored meeting on June 20-23, 2006 in Melbourne, Australia, which launched the Human Variome Project. This meeting addressed all areas of human genetics relevant to collection of information on variation and its effects. Members of each of eight sessions (the clinic and phenotype, the diagnostic laboratory, the research laboratory, curation and collection, informatics, relevance to the emerging world, integration and federation and funding and sustainability) developed a number of recommendations that were then organized into a total of 96 recommendations to act as a foundation for future work worldwide. Here we summarize the background of the project, the meeting and its recommendations.
Assuntos
Genoma Humano , Guias como Assunto , Polimorfismo Genético , Doenças Genéticas Inatas/classificação , Doenças Genéticas Inatas/genética , Projeto Genoma Humano , Humanos , Organização Mundial da SaúdeRESUMO
We previously isolated PARKIN (PARK2) as a gene responsible for a unique sort of Parkinson disease, namely Autosomal Recessive Juvenile Parkinsonism (ARJP). In this study, we surveyed all the available literature describing PARK2 gene/Parkin protein mutations found in Parkinson disease patients. Only carefully evaluated data were deposited in the graphical database MutationView (http://mutview.dmb.med.keio.ac.jp) to construct KM-parkin-DB, an independent sub-set database. Forty-four articles were selected for data curation regarding clinical information such as ethnic origins, manifested symptoms, onset age, and hereditary patterns as well as mutation details including base changes and zygosity. A total of 366 cases were collected from 39 ethnic origins and 96 pathogenic mutations were found. PARK2 gene mutations were found also in some general Parkinson disease patients. The majority (63%) of mutations in PARK2 were restricted to two particular domains (UBL and RING1) of the Parkin protein. In these domains, two major mutations, a large deletion (DelEx3) and a point mutation (p.Arg275Trp), were located.
Assuntos
Mutação , Transtornos Parkinsonianos/genética , Ubiquitina-Proteína Ligases/genética , Bases de Dados de Ácidos Nucleicos , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases/químicaRESUMO
Down syndrome (DS), also known as Trisomy 21, is the most common chromosome aneuploidy in live-born children and displays a complicated symptom. To date, several kinds of mouse models have been generated to understand the molecular pathology of DS, yet the gene dosage effects and gene(s)-phenotype(s) correlation are not well understood. In this study, we established a novel method to generate a partial trisomy mice using the mouse ES cells that harbor a single copy of human artificial chromosome (HAC), into which a small human DNA segment containing human chromosome 21 genes cloned in a bacterial artificial chromosome (BAC) was recombined. The produced mice were found to maintain the HAC carrying human genes as a mini-chromosome, hence termed as a Trans-Mini-Chromosomal (TMC) mouse, and HAC was transmitted for more than twenty generations independent from endogenous mouse chromosomes. The three human transgenes including cystathionine ß-synthase, U2 auxiliary factor and crystalline alpha A were expressed in several mouse tissues with various expression levels relative to mouse endogenous genes. The novel system is applicable to any of human and/or mouse BAC clones. Thus, the TMC mouse carrying a HAC with a limited number of genes would provide a novel tool for studying gene dosage effects involved in the DS molecular pathogenesis and the gene(s)-phenotype(s) correlation.
Assuntos
Cromossomos Artificiais Humanos/genética , Cromossomos Humanos Par 21/genética , Modelos Animais de Doenças , Síndrome de Down/genética , Animais , Cruzamentos Genéticos , Células-Tronco Embrionárias/metabolismo , Dosagem de Genes/genética , Perfilação da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes/genéticaRESUMO
Recently, we isolated 4 distinct kinds of single chain antibody against human EGF receptor (EGFR) after screening the Keio phage display scFv library by using two methods of target-guided proximity labeling. In the current study, these monovalent scFv antibodies were converted to bivalent IgGs of humanized forms (hIgGs) by recombinant technology using the specially designed expression vectors followed by protein production in CHO cells. The resulting recombinant hIgGs were examined for their binding specificity using several different transformed human BJ cell lines that express deletion mutants of EGFR, each lacking one of 4 distinct extracellular domains (L1, L2, C1 and C2). Immuno-fluorescent microscopy and immuno-precipitation assay on these cells indicated that 4 distinct kinds of hIgGs bind to one of 3 different domains (L1, C1 and C2). Then, these hIgGs were further examined for biological effects on human A431 cancer cells, which overexpress EGFR. The results indicated that hIgG38 binding to L1 and hIgG45 binding to C2 substantially suppressed the EGF-induced phosphorylation of EGFR, resulting in the growth inhibition of A431 cancer cells. On the contrary, hIgG40 binding to C1 and hIgG42 binding to another site (epitope) of C2 exhibited no such inhibitory effects. Thus, the newly produced four recombinant hIgG antibodies recognize 4 different sites (epitopes) in 3 different extracellular domains of EGFR and exhibit different biological effects on cancer cells. These characteristics are somewhat different from the currently utilized therapeutic anti-EGFR antibodies. Hence, these hIgG antibodies will be invaluable as a research tool for the detailed molecular analysis of the EGFR-mediated signal transduction mechanism and more importantly a possible application as new therapeutic agents to treat certain types of cancers.
Assuntos
Proliferação de Células/efeitos dos fármacos , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Neoplasias/patologia , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Especificidade de Anticorpos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Epitopos/imunologia , Epitopos/metabolismo , Receptores ErbB/química , Espaço Extracelular , Humanos , Imunoglobulina G/uso terapêutico , Imunoterapia/métodos , Neoplasias/terapia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêuticoRESUMO
Resveratrol was glucosylated to its 3- and 4'-ß-glucosides by cultured cells of Phytolacca americana. On the other hand, cultured P. americana cells glucosylated pterostilbene to its 4'-ß-glucoside. P. americana cells converted piceatannol into its 4'-ß-glucoside. The 3- and 4'-ß-glucosides of resveratrol were further glucosylated to 3- and 4'-ß-maltosides of resveratrol, 4'-ß-maltoside of which is a new compound, by cyclodextrin glucanotransferase. Resveratrol 3-ß-glucoside and 3-ß-maltoside showed low 2,2-diphenyl-1-picrylhydrazyl free-radical-scavenging activity, whereas other glucosides had no radical-scavenging activity. Piceatannol 4'-ß-glucoside showed the strongest inhibitory activity among the stilbene glycosides towards histamine release from rat peritoneal mast cells. Pterostilbene 4'-ß-glucoside showed high phosphodiesterase inhibitory activity.
Assuntos
Glicosídeos/química , Estilbenos/síntese química , Estilbenos/farmacologia , Animais , Antialérgicos/síntese química , Antialérgicos/química , Antialérgicos/farmacologia , Compostos de Bifenilo , Linhagem Celular , Técnicas de Química Sintética , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Liberação de Histamina/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Picratos , Ratos , Resveratrol , Estilbenos/químicaRESUMO
The precise control of spatiotemporal expression of target genes is crucial when establishing transgenic animals, and the introduction of genes for fluorescent marker proteins is inevitable for accelerating research at molecular levels. To assist this, we constructed a novel dual promoter expression vector for two independent reporter genes, green fluorescent protein (GFP) and red fluorescent protein (mCherry). Their expression is designed under the control of two distinct tissue-specific promoters, e.g. zebrafish cardiac muscle-specific promoter (cmlc2) and medaka skeletal muscle-specific promoter (myl2) derived from the myosin light chain 2 genes, and they are placed in a head-to-head orientation. After microinjecting the dual promoter expression vector into fertilized eggs of medaka, the developing fish embryos and the resulting transgenic fish lines showed strong GFP signal in the whole body (skeletal muscle) and mCherry signal in the heart (cardiac muscle). However, weak GFP signal was observed in the heart, indicating a leakiness of the skeletal muscle promoter. To improve the stringency of dual promoter expression, we inserted two chicken-derived insulators, e.g. tandem copies of the core sequence (250 bp) of cHS4 (5'-hypersensitive site-4 chicken beta-globin insulator), in the boundary of two promoters. The dual promoter expression vector with insulator now ensured the stringent tissue-specific expression in the transgenic fish lines. Thus, our dual promoter expression system with insulator is compatible to the conventional IRES and fused reporter gene systems and will be an alternative method to produce the transgenic fishes.
Assuntos
Animais Geneticamente Modificados/crescimento & desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Animais , Galinhas/genética , Regulação da Expressão Gênica no Desenvolvimento , Elementos Isolantes/genética , Oryzias/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteína Vermelha FluorescenteRESUMO
Teleosts comprise more than half of all vertebrate species and have adapted to a variety of marine and freshwater habitats. Their genome evolution and diversification are important subjects for the understanding of vertebrate evolution. Although draft genome sequences of two pufferfishes have been published, analysis of more fish genomes is desirable. Here we report a high-quality draft genome sequence of a small egg-laying freshwater teleost, medaka (Oryzias latipes). Medaka is native to East Asia and an excellent model system for a wide range of biology, including ecotoxicology, carcinogenesis, sex determination and developmental genetics. In the assembled medaka genome (700 megabases), which is less than half of the zebrafish genome, we predicted 20,141 genes, including approximately 2,900 new genes, using 5'-end serial analysis of gene expression tag information. We found single nucleotide polymorphisms (SNPs) at an average rate of 3.42% between the two inbred strains derived from two regional populations; this is the highest SNP rate seen in any vertebrate species. Analyses based on the dense SNP information show a strict genetic separation of 4 million years (Myr) between the two populations, and suggest that differential selective pressures acted on specific gene categories. Four-way comparisons with the human, pufferfish (Tetraodon), zebrafish and medaka genomes revealed that eight major interchromosomal rearrangements took place in a remarkably short period of approximately 50 Myr after the whole-genome duplication event in the teleost ancestor and afterwards, intriguingly, the medaka genome preserved its ancestral karyotype for more than 300 Myr.
Assuntos
Evolução Molecular , Genoma/genética , Oryzias/genética , Animais , China , Cromossomos/genética , Proteínas de Peixes/genética , Genômica , Humanos , Japão , Oryzias/classificação , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Taiwan , Fatores de TempoRESUMO
We have developed a graphical image database CancerProView (URL: http://cancerproview.dmb.med.keio.ac.jp/php/cpv.html) to assist the search for alterations of the motifs/domains in the cancer-related proteins that are caused by mutations in the corresponding genes. For the CancerProView, we have collected various kinds of data on 180 cancer-related proteins in terms of the motifs/domains, genomic structures of corresponding genes, and 109 charts of the protein interaction pathways. Moreover, we have collected the relevant data on 1041 reference genes including 197 non-cancer disease-associated genes, and the nucleotide sequences for 2011 full-length cDNA's and the alternatively spliced transcript variants. Thus, the CancerProView database system would provide valuable information to facilitate basic cancer research as well as for designing new molecular diagnosis and drug discovery for cancers. The CancerProView database can be operated via Internet with any Web browser, and the system is freely available to interested users without ID and password.
Assuntos
Bases de Dados Genéticas , Genes Neoplásicos , Proteínas de Neoplasias/genética , Neoplasias/genética , Predisposição Genética para Doença , Humanos , Internet , Mutação , Neoplasias/diagnóstico , Interface Usuário-ComputadorRESUMO
Spinocerebellar ataxia type 31 (SCA31) is an adult-onset autosomal-dominant neurodegenerative disorder showing progressive cerebellar ataxia mainly affecting Purkinje cells. The SCA31 critical region was tracked down to a 900 kb interval in chromosome 16q22.1, where the disease shows a strong founder effect. By performing comprehensive Southern blot analysis and BAC- and fosmid-based sequencing, we isolated two genetic changes segregating with SCA31. One was a single-nucleotide change in an intron of the thymidine kinase 2 gene (TK2). However, this did not appear to affect splicing or expression patterns. The other was an insertion, from 2.5-3.8 kb long, consisting of complex penta-nucleotide repeats including a long (TGGAA)n stretch. In controls, shorter (1.5-2.0 kb) insertions lacking (TGGAA)n were found only rarely. The SCA31 repeat insertion's length inversely correlated with patient age of onset, and an expansion was documented in a single family showing anticipation. The repeat insertion was located in introns of TK2 and BEAN (brain expressed, associated with Nedd4) expressed in the brain and formed RNA foci in the nuclei of patients' Purkinje cells. An electrophoretic mobility-shift assay showed that essential splicing factors, serine/arginine-rich splicing factors SFRS1 and SFRS9, bind to (UGGAA)n in vitro. Because (TGGAA)n is a characteristic sequence of paracentromeric heterochromatin, we speculate that the insertion might have originated from heterochromatin. SCA31 is important because it exemplifies human diseases associated with "inserted" microsatellite repeats that can expand through transmission. Our finding suggests that the ectopic microsatellite repeat, when transcribed, might cause a disease involving the essential splicing factors.
Assuntos
Repetições de Microssatélites , Mutagênese Insercional , Ataxias Espinocerebelares/genética , Adulto , Idade de Início , Sequência de Bases , Cromossomos Humanos Par 16 , Efeito Fundador , Genes Dominantes , Haplótipos , Homozigoto , Humanos , Hibridização In Situ , Íntrons , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Análise de Sequência de DNA , Ataxias Espinocerebelares/classificação , Timidina Quinase/genéticaRESUMO
During the development of the vertebrate nervous system, mitosis of neural progenitor cells takes place near the lumen, the apical side of the neural tube, through a characteristic movement of nuclei known as interkinetic nuclear migration (INM). Furthermore, during the proliferative period, neural progenitor cells exhibit planar cell divisions to produce equivalent daughter cells. Here, we examine the potential role of extracellular signals in INM and planar divisions using the medaka mutant tacobo (tab). This tab mutant shows pleiotropic phenotypes, including neurogenesis, and positional cloning identified tab as laminin gamma1 (lamc1), providing a unique framework to study the role of extracellular signals in neurogenesis. In tab mutant neural tubes, a number of nuclei exhibit abnormal patterns of migration leading to basally mislocalized mitosis. Furthermore, the orientation of cell division near the apical surface is randomized. Probably because of these defects, neurogenesis is accelerated in the tab neural tube. Detailed analyses demonstrate that extracellular signals mediated by the FAK pathway regulate INM and planar divisions in the neuroepithelium, possibly through interaction with the intracellular dynein-motor system.
Assuntos
Núcleo Celular/metabolismo , Proteínas de Peixes/metabolismo , Células Neuroepiteliais/metabolismo , Transdução de Sinais/fisiologia , Animais , Immunoblotting , Imuno-Histoquímica , Microscopia Confocal , Células Neuroepiteliais/citologia , OryziasRESUMO
BACKGROUND: Interleukin-18 (IL-18) is a potent proinflammatory cytokine that augments both innate and acquired immune responses. It is also a crucial regulator of lymphocyte production of interferon-γ (IFN-γ), which can promote acute cellular rejection of transplanted solid organs. METHODS: To evaluate the role of IL-18 in liver transplantation, we constructed an adenoviral vector encoding IL-18 binding protein (Adex-IL18bp), which specifically suppressed the biologic activity of IL-18, and examined the effect of this suppression on liver allografts by using a high-responder rat model (ACI to Lewis) of orthotopic liver transplantation (OLTx). Donor rats were given one intravenous injection of Adex-IL18bp or Adex-LacZ (control vector) 2 d before OLTx. RESULTS: Seven days after OLTx, overexpression of IL-18bp resulting from the adenovirus gene transfer was associated with significantly decreased serum alanine aminotransferase levels and less histologic hepatic injury in recipient rats with Adex-IL18bp-pretreated donors compared with Adex-LacZ controls. Adex-IL18bp pretreatment also significantly prolonged rat/allograft survival, inhibited expression of IFN-γ, and reduced levels (versus control values) of both CXCL10 and CX3CL1, which can be induced by IFN-γ. CONCLUSION: These results suggest that IL-18 has an important role in liver allograft rejection through IFN-γ and chemokines and that specific suppression of IL-18 may improve liver function early after transplantation.
Assuntos
Sobrevivência de Enxerto/fisiologia , Interleucina-18/fisiologia , Transplante de Fígado/fisiologia , Fígado/metabolismo , Adenoviridae/genética , Alanina Transaminase/sangue , Animais , Quimiocinas/metabolismo , Sobrevivência de Enxerto/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Interferon gama/metabolismo , Interleucina-18/antagonistas & inibidores , Fígado/efeitos dos fármacos , Masculino , Modelos Animais , Ratos , Ratos Endogâmicos Lew , Transplante HomólogoRESUMO
In the human thymus, AIRE (autoimmune regulator) gene is expressed in a very limited type of medullary thymic epithelial cells (mTECs) and no cognate cell lines are available, hence the molecular analysis of AIRE gene function has been difficult. To improve this situation, we attempted to isolate Aire-expressing cells and established three cell lines (AireâºTEC1, AireâºTEC2, AireâºDC) from the abnormally enlarged thymus, which was developed in the transgenic mice expressing SV40 T-antigen driven by the mouse Aire gene promoter. When these Aire⺠cell lines were co-cultured with fresh thymocytes, they adhered to the majority of thymocytes and induced apoptosis as if negative selection of T-cells in the thymus is occurring in vitro. Further analysis revealed that these Aire⺠cell lines are derived from mTECs and exhibit characteristic natures of "antigen presenting cells" including several distinct abilities: to express a variety of peripheral tissue-specific antigens, to produce immunoproteasome and immunological synapse, and to express some of TNFSFs (tumor necrosis factor super families). Thus, the newly established Aire⺠cell lines will be invaluable for the further detailed analysis of AIRE gene function in the central tolerance of immunity and autoimmune disease.
Assuntos
Antígenos/biossíntese , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia , Animais , Antígenos/genética , Antígenos/imunologia , Células Cultivadas , Células Epiteliais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteína AIRERESUMO
UNLABELLED: During vertebrate embryogenesis, the liver develops at a precise location along the endodermal primitive gut tube because of signaling delivered by adjacent mesodermal tissues. Although several signaling molecules have been associated with liver formation, the molecular mechanism that regulates liver specification is still unclear. We previously performed a screen in medaka to isolate mutants with impaired liver development. The medaka hio mutants exhibit a profound (but transient) defect in liver specification that resembles the liver formation defect found in zebrafish prometheus (prt) mutants, whose mutation occurs in the wnt2bb gene. In addition to their liver abnormality, hio mutants lack pectoral fins and die after hatching. Positional cloning indicated that the hio mutation affects the raldh2 gene encoding retinaldehyde dehydrogenase type2 (RALDH2), the enzyme principally responsible for retinoic acid (RA) biosynthesis. Mutations of raldh2 in zebrafish preclude the development of pectoral fins. Interestingly, in hio mutants, expression of wnt2bb in the lateral plate mesoderm (LPM) directly adjacent to the liver-forming endoderm was completely lost. CONCLUSION: Our data reveal the unexpected finding that RA signaling positively regulates the wnt2bb gene expression required for liver specification in medaka. These results suggest that a common molecular mechanism may underlie liver and pectoral fin specification during piscine embryogenesis.
Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Fígado/embriologia , Oryzias/genética , Tretinoína/fisiologia , Proteína Wnt2/genética , Animais , Transdução de SinaisRESUMO
The thymus is a vertebrate-specific organ where T lymphocytes are generated. Genetic programs that lead to thymus development are incompletely understood. We previously screened ethylnitrosourea-induced medaka mutants for recessive defects in thymus development. Here we report that one of those mutants is caused by a missense mutation in a gene encoding the previously uncharacterized protein WDR55 carrying the tryptophan-aspartate-repeat motif. We find that WDR55 is a novel nucleolar protein involved in the production of ribosomal RNA (rRNA). Defects in WDR55 cause aberrant accumulation of rRNA intermediates and cell cycle arrest. A mutation in WDR55 in zebrafish also leads to analogous defects in thymus development, whereas WDR55-null mice are lethal before implantation. These results indicate that WDR55 is a nuclear modulator of rRNA synthesis, cell cycle progression, and embryonic organogenesis including teleost thymus development.
Assuntos
Ciclo Celular , Proteínas de Peixes/metabolismo , Proteínas Nucleares/metabolismo , Oryzias/crescimento & desenvolvimento , Oryzias/metabolismo , RNA Ribossômico/biossíntese , Timo/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas de Peixes/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Células NIH 3T3 , Proteínas Nucleares/genética , Oryzias/genética , Fenótipo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , Alinhamento de Sequência , Timo/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismoRESUMO
YPEL5 is a member of the YPEL gene family that is highly conserved in the eukaryotic species and apparently involved in a certain cell division-related function. In this study, we examined the functional and phylogenetic aspects of YPEL5 protein in more detail. During cell cycle, YPEL5 protein was detected at different subcellular localizations; at interphase, it was located in the nucleus and centrosome, then it changed location sequentially to spindle poles, mitotic spindle, and spindle midzone during mitosis, and finally transferred to midbody at cytokinesis. Knockdown of YPEL5 function by siRNA or anti-sense morpholino oligonucleotide inhibited the growth of cultured COS-7 cells and early development of medaka fish embryos, indicating its involvement in cell cycle progression. Interestingly, RanBPM (Ran Binding Protein in the Microtubule organizing center, encoded by RANBP9) was identified as a YPEL5-binding protein by yeast two-hybrid method. A paralog of RanBPM, namely RanBP10 (encoded by RANBP10), was found to be another YPEL5-binding protein, and these two protein genes are highly conserved each other. Comparative genomic analysis allowed us to define a new gene family consisting of RanBPM and RanBP10, named Scorpin, providing a basis to better understand how they interact with YPEL5.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Família Multigênica/genética , Proteínas Nucleares/metabolismo , Filogenia , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Células COS , Proteínas de Ciclo Celular/genética , Chlorocebus aethiops , Clonagem Molecular , Análise por Conglomerados , DNA Complementar/genética , Bases de Dados Genéticas , Embrião não Mamífero/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Oligonucleotídeos/genética , Oryzias , RNA Interferente Pequeno/genética , Análise de Sequência de DNA , Técnicas do Sistema de Duplo-HíbridoRESUMO
KMeyeDB (http://mutview.dmb.med.keio.ac.jp/) is a database of human gene mutations that cause eye diseases. We have substantially enriched the amount of data in the database, which now contains information about the mutations of 167 human genes causing eye-related diseases including retinitis pigmentosa, cone-rod dystrophy, night blindness, Oguchi disease, Stargardt disease, macular degeneration, Leber congenital amaurosis, corneal dystrophy, cataract, glaucoma, retinoblastoma, Bardet-Biedl syndrome, and Usher syndrome. KMeyeDB is operated using the database software MutationView, which deals with various characters of mutations, gene structure, protein functional domains, and polymerase chain reaction (PCR) primers, as well as clinical data for each case. Users can access the database using an ordinary Internet browser with smooth user-interface, without user registration. The results are displayed on the graphical windows together with statistical calculations. All mutations and associated data have been collected from published articles. Careful data analysis with KMeyeDB revealed many interesting features regarding the mutations in 167 genes that cause 326 different types of eye diseases. Some genes are involved in multiple types of eye diseases, whereas several eye diseases are caused by different mutations in one gene.
Assuntos
Bases de Dados Genéticas , Oftalmopatias/genética , Predisposição Genética para Doença/genética , Oftalmopatias/classificação , Oftalmopatias/patologia , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , Mutação , SoftwareRESUMO
BACKGROUND: Higher crustaceans (class Malacostraca) represent the most species-rich and morphologically diverse group of non-insect arthropods and many of its members are commercially important. Although the crustacean DNA sequence information is growing exponentially, little is known about the genome organization of Malacostraca. Here, we constructed a bacterial artificial chromosome (BAC) library and performed BAC-end sequencing to provide genomic information for kuruma shrimp (Marsupenaeus japonicus), one of the most widely cultured species among crustaceans, and found the presence of a redundant sequence in the BAC library. We examined the BAC clone that includes the redundant sequence to further analyze its length, copy number and location in the kuruma shrimp genome. RESULTS: Mj024A04 BAC clone, which includes one redundant sequence, contained 27 putative genes and seemed to display a normal genomic DNA structure. Notably, of the putative genes, 3 genes encode homologous proteins to the inhibitor of apoptosis protein and 7 genes encode homologous proteins to white spot syndrome virus, a virulent pathogen known to affect crustaceans. Colony hybridization and PCR analysis of 381 BAC clones showed that almost half of the BAC clones maintain DNA segments whose sequences are homologous to the representative BAC clone Mj024A04. The Mj024A04 partial sequence was detected multiple times in the kuruma shrimp nuclear genome with a calculated copy number of at least 100. Microsatellites based BAC genotyping clearly showed that Mj024A04 homologous sequences were cloned from at least 48 different chromosomal loci. The absence of micro-syntenic relationships with the available genomic sequences of Daphnia and Drosophila suggests the uniqueness of these fragments in kuruma shrimp from current arthropod genome sequences. CONCLUSIONS: Our results demonstrate that hyper-expansion of large DNA segments took place in the kuruma shrimp genome. Although we analyzed only a part of the duplicated DNA segments, our result suggested that it is difficult to analyze the shrimp genome following normal analytical methodology. Hence, it is necessary to avoid repetitive sequence (such as segmental duplications) when studying the other unique structures in the shrimp genome.
Assuntos
Cromossomos Artificiais Bacterianos , Genômica/métodos , Penaeidae/genética , Duplicações Segmentares Genômicas , Animais , Dosagem de Genes , Biblioteca Gênica , Genótipo , Repetições de Microssatélites , Análise de Sequência de DNARESUMO
Autoimmune regulator (AIRE) gene mutation is responsible for the development of autoimmune-polyendocrinopathy-candidiasis ectodermal dystrophy, an organ-specific autoimmune disease with monogenic autosomal recessive inheritance. AIRE is predominantly expressed in medullary epithelial cells of the thymus and is considered to play important roles in the establishment of self-tolerance. AIRE contains two plant homeodomain (PHD) domains, and the novel role of PHD as an E3 ubiquitin (Ub) ligase has just emerged. Here we show that the first PHD (PHD1) of AIRE mediates E3 ligase activity. The significance of this finding was underscored by the fact that disease-causing missense mutations in the PHD1 (C311Y and P326Q) abolished its E3 ligase activity. These results add a novel enzymatic function for AIRE and suggest an indispensable role of the Ub proteasome pathway in the establishment of self-tolerance, in which AIRE is involved.