Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 21(2): 89-97, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31957975

RESUMO

The aim of this study is to evaluate the patient positioning uncertainty in noncoplanar stereotactic radiosurgery or stereotactic radiotherapy (SRS/SRT) for intracranial lesions with the frameless 6D ExacTrac system. In all, 28 patients treated with SRS/SRT of 70 treatment plans at our institution were evaluated in this study. Two X-ray images with the frameless 6D ExacTrac system were first acquired to correct (XC) and verify (XV) the patient position at a couch angle of 0º. Subsequently, the XC and XV images were also acquired at each planned couch angle for using noncoplanar beams to detect position errors caused by rotating a couch. The translational XC and XV shift values at each couch angle were calculated for each plan. The percentages of the translational XC shift values within 1.0 mm for each planned couch angle for using noncoplanar beams were 77.86%, 72.26%, and 98.47% for the lateral, longitudinal, and vertical directions, respectively. Those within 2.0 mm were 98.22%, 97.96%, and 99.75% for the lateral, longitudinal, and vertical directions, respectively. The maximum absolute values of the translational XC shifts among all planned couch angles for using noncoplanar beams were 2.69, 2.45, and 2.17 mm for the lateral, longitudinal, and vertical directions, respectively. The overall absolute values of the translational XV shifts were less than 1.0 mm for all directions except for one case in the longitudinal direction. The patient position errors were detected after couch rotation for using noncoplanar beams, and they exceeded a planning target volume (PTV) margin of 1.0-2.0 mm used commonly in SRS/SRT treatment. These errors need to be corrected at each planned couch angle, or the PTV margin should be enlarged.


Assuntos
Posicionamento do Paciente , Radiocirurgia/métodos , Neoplasias Encefálicas/radioterapia , Desenho de Equipamento , Humanos , Imageamento Tridimensional/métodos , Imobilização , Modelos Estatísticos , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia , Reprodutibilidade dos Testes , Rotação , Pesquisa Translacional Biomédica/métodos , Incerteza
2.
Rep Pract Oncol Radiother ; 24(6): 600-605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660052

RESUMO

AIM: To evaluate the success of a patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA) practice for prostate cancer patients across multiple institutions using a questionnaire survey. BACKGROUND: The IMRT QA practice involves different methods of dose distribution verification and analysis at different institutions. MATERIALS AND METHODS: Two full-arc volumetric modulated arc therapy (VMAT) plan and 7 fixed-gantry IMRT plan with DMLC were used for patient specific QA across 22 institutions. The same computed tomography image and structure set were used for all plans. Each institution recalculated the dose distribution with fixed monitor units and without any modification. Single-point dose measurement with a cylindrical ionization chamber and dose distribution verification with a multi-detector or radiochromic film were performed, according to the QA process at each institution. RESULTS: Twenty-two institutions performed the patient-specific IMRT QA verifications. With a single-point dose measurement at the isocenter, the average difference between the calculated and measured doses was 0.5 ±â€¯1.9%. For the comparison of dose distributions, 18 institutions used a two or three-dimensional array detector, while the others used Gafchromic film. In the γ test with dose difference/distance-to-agreement criteria of 3%-3 mm and 2%-2 mm with a 30% dose threshold, the median gamma pass rates were 99.3% (range: 41.7%-100.0%) and 96.4% (range: 29.4%-100.0%), respectively. CONCLUSION: This survey was an informative trial to understand the verification status of patient-specific IMRT QA measurements for prostate cancer. In most institutions, the point dose measurement and dose distribution differences met the desired criteria.

3.
Artigo em Japonês | MEDLINE | ID: mdl-30787223

RESUMO

PURPOSE: The dosimetric error due to immobilization devices has been highlighted by the AAPM Task Group 176. We developed a novel low-radiation-absorbent immobilization adaptor (HMA), which can be used with a Styrofoam headrest for head and neck region in radiotherapy. The purpose of this study was to investigate the impact of the HMA on the dose distribution and compare with a commercially released plastic adapter. METHODS: Computed tomography (CT) simulation and dose calculation on a treatment planning system (TPS) were performed by the use of HMA and the plastic adapter with a cylindrical phantom. Both the adapters were placed on the phantom upside and the attenuation rate was measured. Gantry angles were changed at every 1°interval from 0°to 50°for measurements. The measured dose was normalized by the value of 90°. The treatment equipment was TrueBeam (Varian medical systems); X-ray energies were set on 4, 6 and 10 MV, respectively. The measured attenuation rates were also compared with calculation results of TPS. RESULTS: The highest differences on attenuation rate of both the adapters were observed at a gantry angle of 32.0°; the differences were 3.0% at 4 MV, 2.7% at 6 MV and 3.0% at 10 MV, respectively, and lower absorption was HMA. TPS calculation results of monitor unit for the HMA were within 1.0% in each energy. CONCLUSION: The HMA was able to provide absorption dose and calculation errors lower than a commercially released adapter. It can also provide more accurate dose delivery for radiotherapy in head and neck because of the low absorption characteristics.


Assuntos
Neoplasias de Cabeça e Pescoço , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
4.
J Appl Clin Med Phys ; 18(3): 215-220, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28422397

RESUMO

Tungsten functional paper (TFP), which contains 80% tungsten by weight, has radiation-shielding properties. We investigated the use of TFP for the protection of operators during interventional or therapeutic angiography. The air kerma rate of scattered radiation from a simulated patient was measured, with and without TFP, using a water-equivalent phantom and fixed C-arm fluoroscopy. Measurements were taken at the level of the operator's eye, chest, waist, and knee, with a variable number of TFP sheets used for shielding. A Monte Carlo simulation was also utilized to analyze the dose rate delivered with and without the TFP shielding. In cine mode, when the number of TFP sheets was varied through 1, 2, 3, 5, and 10, the respective reduction in the air kerma rate relative to no TFP shielding was as follows: at eye level, 24.9%, 29.9%, 41.6%, 50.4%, and 56.2%; at chest level, 25.3%, 33.1%, 34.9%, 46.1%, and 44.3%; at waist level, 45.1%, 57.0%, 64.4%, 70.7%, and 75.2%; and at knee level, 2.1%, 2.2%, 2.1%, 2.1%, and 2.1%. In fluoroscopy mode, the respective reduction in the air kerma rate relative to no TFP shielding was as follows: at eye level, 24.8%, 30.3%, 34.8%, 51.1%, and 58.5%; at chest level, 25.8%, 33.4%, 35.5%, 45.2%, and 44.4%; at waist level, 44.6%, 56.8%, 64.7%, 71.7%, and 77.2%; and at knee level, 2.2%, 0.0%, 2.2%, 2.8%, and 2.5%. The TFP paper exhibited good radiation-shielding properties against the scattered radiation encountered in clinical settings, and was shown to have potential application in decreasing the radiation exposure to the operator during interventional radiology.


Assuntos
Proteção Radiológica/instrumentação , Radiologia Intervencionista/instrumentação , Tungstênio , Fluoroscopia , Humanos , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Exposição à Radiação/prevenção & controle , Radiografia Intervencionista
5.
Macromol Rapid Commun ; 36(23): 2047-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26398881

RESUMO

A series of optically active helical copolymers of phenylacetylenes are prepared by the rhodium-catalyzed copolymerization of the imidazolidinone-linked, catalytically active achiral phenylacetylenes and catalytically inactive chiral phenylacetylenes. The obtained chiral/achiral copolymers exhibit an induced circular dichroism in the UV-vis regions of the copolymer backbones resulting from a preferred-handed helical conformation biased by the chiral imidazolidinone units incorporated in the copolymers. The copolymers are found to catalyze the asymmetric Diels-Alder reaction and produce the products with a moderate enantioselectivity in spite of the fact that the catalytically active units of the copolymers are achiral, indicating that the observed enantioselectivity totally originates from the helical chirality dynamically induced by the optically active, but catalytically inactive imidazolidinone units incorporated in the copolymers.


Assuntos
Acetileno/análogos & derivados , Imidazolidinas/química , Acetileno/química , Catálise
6.
Radiol Phys Technol ; 16(4): 431-442, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668931

RESUMO

This study aimed to investigate the educational environment of radiotherapy technology and medical physics specialists (RTMP) in Japan. We conducted a nationwide questionnaire survey in radiotherapy institutions between June and August 2022. Participants were asked questions regarding the educational system, perspectives on updating RTMP's skills and qualifications, and perspectives on higher education for RTMP at radiotherapy institutions. The results were then analyzed in detail according to three factors: whether the hospital was designed for cancer care, whether it was a Japanese Society for Radiation Oncology (JASTRO)-accredited hospital, and whether it was an intensity-modulated radiation therapy charged hospital. Responses were obtained from 579 (69%) nationwide radiation therapy institutions. For non-qualified RTMP, 10% of the institutions had their own educational systems, only 17% of institutions provided on-the-job training, and 84% of institutions encouraged participation in educational lectures and workshops in academic societies. However, for qualified RTMP, 3.0% of institutions had their own educational systems, only 8.9% of the institutions provided on-the-job training, and 83% encouraged participation in academic conferences and workshops. Less than 1% of the facilities offered salary increases for certification, whereas 8.2% offered consideration for occupational promotion. Regarding the educational environment, JASTRO-accredited hospitals were better than general hospitals. Few institutions have their own educational systems for qualified and non-qualified RTMP, but they encourage them to attend educational seminars and conferences. It is desirable to provide systematic education and training by academic and professional organizations to maintain the skills of individuals.


Assuntos
Radioterapia (Especialidade) , Humanos , Japão , Física , Tecnologia , Inquéritos e Questionários
7.
J Radiat Res ; 64(6): 911-925, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37816672

RESUMO

Several staffing models are used to determine the required medical physics staffing, including radiotherapy technologists, of radiation oncology departments. However, since Japanese facilities tend to be smaller in scale than foreign ones, those models might not apply to Japan. Therefore, in this study, we surveyed workloads in Japan to estimate the optimal medical physics staffing in external beam radiotherapy. A total of 837 facilities were surveyed to collect information regarding radiotherapy techniques and medical physics specialists (RTMPs). The survey covered facility information, staffing, patient volume, equipment volume, workload and quality assurance (QA) status. Full-time equivalent (FTE) factors were estimated from the workload and compared with several models. Responses were received from 579 facilities (69.2%). The median annual patient volume was 369 at designated cancer care hospitals (DCCHs) and 252 across all facilities. In addition, the median FTE of RTMPs was 4.6 at DCCHs and 3.0 at all sites, and the average QA implementation rate for radiotherapy equipment was 69.4%. Furthermore, advanced treatment technologies have increased workloads, particularly in computed tomography simulations and treatment planning tasks. Compared to published models, larger facilities (over 500 annual patients) had a shortage of medical physics staff. In very small facilities (about 140 annual patients), the medical physics staffing requirement was estimated to be 0.5 FTE, implying that employing a full-time medical physicist would be inefficient. However, ensuring the quality of radiotherapy is an important issue, given the limited number of RTMPs. Our study provides insights into optimizing staffing and resource allocation in radiotherapy departments.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Humanos , Carga de Trabalho , Japão , Inquéritos e Questionários , Neoplasias/radioterapia , Física
8.
Phys Med ; 39: 59-66, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28623025

RESUMO

The purpose of this study was to obtain the fraction by weight of the elemental composition and mass density of a humanoid tissue phantom that includes lung tissue, soft tissue, and bone tissue, by using dual energy computed tomography (DECT). The fraction by weight and the mass density for tissue-equivalent materials were calculated by means of a least-squares method with a linear attenuation coefficient, using monochromatic photon energies of 10-140keV, as obtained from DECT. The accuracy of calculated values for the fractions by weight of H (hydrogen), C (carbon), N (nitrogen), and O (oxygen) as verified by comparing the values with those that were analyzed using the combustion technique. The fraction by weight for other elements was confirmed by comparing with the analyzed values by means of energy dispersive photon spectroscopy. The calculated mass densities for each tissue were compared with those that were obtained by dividing the weight by volume. The calculated values of the fraction by weight that were obtained by means of DECT had differences of 1.9%, 9.2%, 6.6%, 7.8%, 0.8%, and 0.2% at a maximum for H, C, N, O, P (phosphorus), and Ca (calcium), respectively, from the reference values analyzed by the combustion technique and energy dispersive photon spectroscopy. The difference in the mass density for tissue was 0.011g/cm3 at a maximum. This study demonstrated the fraction by weight and the mass density of the humanoid tissue-equivalent materials that were calculated by means of DECT were expected high accuracy.


Assuntos
Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Osso e Ossos , Humanos , Pulmão , Fótons
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa