Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell ; 140(4): 517-28, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20178744

RESUMO

Despite its toxicity, H(2)O(2) is produced as a signaling molecule that oxidizes critical cysteine residues of effectors such as protein tyrosine phosphatases in response to activation of cell surface receptors. It has remained unclear, however, how H(2)O(2) concentrations above the threshold required to modify effectors are achieved in the presence of the abundant detoxification enzymes peroxiredoxin (Prx) I and II. We now show that PrxI associated with membranes is transiently phosphorylated on tyrosine-194 and thereby inactivated both in cells stimulated via growth factor or immune receptors in vitro and in those at the margin of healing cutaneous wounds in mice. The localized inactivation of PrxI allows for the transient accumulation of H(2)O(2) around membranes, where signaling components are concentrated, while preventing the toxic accumulation of H(2)O(2) elsewhere. In contrast, PrxII was inactivated not by phosphorylation but rather by hyperoxidation of its catalytic cysteine during sustained oxidative stress.


Assuntos
Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/metabolismo , Animais , Membrana Celular/metabolismo , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Células NIH 3T3 , Estresse Oxidativo , Ratos , Receptores Proteína Tirosina Quinases/metabolismo , Pele/metabolismo , Tirosina/metabolismo , Cicatrização
2.
Am J Physiol Cell Physiol ; 326(4): C1067-C1079, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314724

RESUMO

Previous work showed that matrix metalloproteinase-7 (MMP-7) regulates colon cancer activities through an interaction with syndecan-2 (SDC-2) and SDC-2-derived peptide that disrupts this interaction and exhibits anticancer activity in colon cancer. Here, to identify potential anticancer agents, a library of 1,379 Food and Drug Administration (FDA)-approved drugs that interact with the MMP-7 prodomain were virtually screened by protein-ligand docking score analysis using the GalaxyDock3 program. Among five candidates selected based on their structures and total energy values for interacting with the MMP-7 prodomain, the known mechanistic target of rapamycin kinase (mTOR) inhibitor, everolimus, showed the highest binding affinity and the strongest ability to disrupt the interaction of the MMP-7 prodomain with the SDC-2 extracellular domain in vitro. Everolimus treatment of the HCT116 human colon cancer cell line did not affect the mRNA expression levels of MMP-7 and SDC-2 but reduced the adhesion of cells to MMP-7 prodomain-coated plates and the cell-surface localization of MMP-7. Thus, everolimus appears to inhibit the interaction between MMP-7 and SDC-2. Everolimus treatment of HCT116 cells also reduced their gelatin-degradation activity and anticancer activities, including colony formation. Interestingly, cells treated with sirolimus, another mTOR inhibitor, triggered less gelatin-degradation activity, suggesting that this inhibitory effect of everolimus was not due to inhibition of the mTOR pathway. Consistently, everolimus inhibited the colony-forming ability of mTOR-resistant HT29 cells. Together, these data suggest that, in addition to inhibiting mTOR signaling, everolimus exerts anticancer activity by interfering with the interaction of MMP-7 and SDC-2, and could be a useful therapeutic anticancer drug for colon cancer.NEW & NOTEWORTHY The utility of cancer therapeutics targeting the proteolytic activities of MMPs is limited because MMPs are widely distributed throughout the body and involved in many different aspects of cell functions. This work specifically targets the activation of MMP-7 through its interaction with syndecan-2. Notably, everolimus, a known mTOR inhibitor, blocked this interaction, demonstrating a novel role for everolimus in inhibiting mTOR signaling and impairing the interaction of MMP-7 with syndecan-2 in colon cancer.


Assuntos
Neoplasias do Colo , Everolimo , Humanos , Everolimo/farmacologia , Sindecana-2/genética , Sindecana-2/metabolismo , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Gelatina , Sirolimo/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Serina-Treonina Quinases TOR
3.
Biochem Biophys Res Commun ; 692: 149363, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38071892

RESUMO

Transcriptionally controlled tumor protein (TCTP) is a highly conserved protein performing a large number of cellular functions by binding with various partner proteins. The importance of its roles in many diseases requires an assay method to find regulatory compounds. However, the molecular characteristics of TCTP made it difficult to search for chemicals interacting with it. In this study, a tryptophan-based assay method was designed and Y151W mutant TCTP was constructed to search binding chemicals. Since there is no tryptophan in the native sequence of TCTP, the incorporation of tryptophan in the Y151W mutant was very effective to establish the method. A flavonoid library was employed to the assay with the method. With the native and Y151W mutant TCTPs, three flavonoids such as morin, myricetin and isobavachalcone have been found to interact with TCTP. Combined with native gel electrophoresis, the binding region of isobavachalcone was suggested to be the flexible loop of TCTP. This approach can be easily applicable to find binding compounds of proteins with similar molecular characteristics of TCTP.


Assuntos
Neoplasias , Triptofano , Humanos , Biomarcadores Tumorais/metabolismo , Proteína Tumoral 1 Controlada por Tradução , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo
4.
Biochem J ; 478(1): 235-245, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33346350

RESUMO

Flavonoids play beneficial roles in various human diseases. In this study, a flavonoid library was employed to probe inhibitors of d-glycero-ß-d-manno-heptose-1-phosphate adenylyltransferase from Burkholderia pseudomallei (BpHldC) and two flavonoids, epigallocatechin gallate (EGCG) and myricetin, have been discovered. BpHldC is one of the essential enzymes in the ADP-l-glycero-ß-d-manno-heptose biosynthesis pathway constructing lipopolysaccharide of B. pseudomallei. Enzyme kinetics study showed that two flavonoids work through different mechanisms to block the catalytic activity of BpHldC. Among them, a docking study of EGCG was performed and the binding mode could explain its competitive inhibitory mode for both ATP and ßG1P. Analyses with EGCG homologs could reveal the important functional moieties, too. This study is the first example of uncovering the inhibitory activity of flavonoids against the ADP-l-glycero-ß-d-manno-heptose biosynthesis pathway and especially targeting HldC. Since there are no therapeutic agents and vaccines available against melioidosis, EGCG and myricetin can be used as templates to develop antibiotics over B. pseudomallei.


Assuntos
Burkholderia pseudomallei/enzimologia , Flavonoides/química , Manose/química , Nucleotidiltransferases/química , Piranos/química , Trifosfato de Adenosina/química , Catequina/análogos & derivados , Catequina/química , Cristalografia por Raios X , Escherichia coli/metabolismo , Concentração Inibidora 50 , Cinética , Ligantes , Simulação de Acoplamento Molecular , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo
5.
Biochem J ; 478(19): 3505-3525, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34515295

RESUMO

DJ-1 is known to play neuroprotective roles by eliminating reactive oxygen species (ROS) as an antioxidant protein. However, the molecular mechanism of DJ-1 function has not been well elucidated. This study explored the structural and functional changes of DJ-1 in response to oxidative stress. Human DJ-1 has three cysteine residues (Cys46, Cys53 and Cys106). We found that, in addition to Cys106, Cys46 is the most reactive cysteine residue in DJ-1, which was identified employing an NPSB-B chemical probe (Ctag) that selectively reacts with redox-sensitive cysteine sulfhydryl. Peroxidatic Cys46 readily formed an intra-disulfide bond with adjacent resolving Cys53, which was identified with nanoUPLC-ESI-q-TOF tandem mass spectrometry (MS/MS) employing DBond algorithm under the non-reducing condition. Mutants (C46A and C53A), not forming Cys46-Cys53 disulfide cross-linking, increased oxidation of Cys106 to sulfinic and sulfonic acids. Furthermore, we found that DJ-1 C46A mutant has distorted unstable structure identified by biochemical assay and employing hydrogen/deuterium exchange-mass spectrometry (HDX-MS) analysis. All three Cys mutants lost antioxidant activities in SN4741 cell, a dopaminergic neuronal cell, unlike WT DJ-1. These findings suggest that all three Cys residues including Cys46-Cys53 disulfide cross-linking are required for maintaining the structural integrity, the regulation process and cellular function as an antioxidant protein. These studies broaden the understanding of regulatory mechanisms of DJ-1 that operate under oxidative conditions.


Assuntos
Antioxidantes/química , Antioxidantes/metabolismo , Cisteína/metabolismo , Estresse Oxidativo/genética , Proteína Desglicase DJ-1/química , Proteína Desglicase DJ-1/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Oxirredução , Proteína Desglicase DJ-1/genética , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Compostos de Sulfidrila/metabolismo , Espectrometria de Massas em Tandem , Transfecção
6.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563658

RESUMO

3CLpro of SARS-CoV-2 is a promising target for developing anti-COVID19 agents. In order to evaluate the catalytic activity of 3CLpros according to the presence or absence of the dimerization domain, two forms had been purified and tested. Enzyme kinetic studies with a FRET method revealed that the catalytic domain alone presents enzymatic activity, despite it being approximately 8.6 times less than that in the full domain. The catalytic domain was crystallized and its X-ray crystal structure has been determined to 2.3 Å resolution. There are four protomers in the asymmetric unit. Intriguingly, they were packed as a dimer though the dimerization domain was absent. The RMSD of superimposed two catalytic domains was 0.190 for 182 Cα atoms. A part of the long hinge loop (LH-loop) from Gln189 to Asp197 was not built in the model due to its flexibility. The crystal structure indicates that the decreased proteolytic activity of the catalytic domain was due to the incomplete construction of the substrate binding part built by the LH-loop. A structural survey with other 3CLpros showed that SARS-CoV families do not have interactions between DM-loop due to the conformational difference at the last turn of helix α7 compared with others. Therefore, we can conclude that the monomeric form contains nascent enzyme activity and that its efficiency increases by dimerization. This new insight may contribute to understanding the behavior of SARS-CoV-2 3CLpro and thus be useful in developing anti-COVID-19 agents.


Assuntos
COVID-19 , SARS-CoV-2 , Domínio Catalítico , Proteases 3C de Coronavírus , Dimerização , Humanos , Cinética , Raios X
7.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742913

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wreaked havoc all over the world. Although vaccines for the disease have recently become available and started to be administered to the population in various countries, there is still a strong and urgent need for treatments to cure COVID-19. One of the safest and fastest strategies is represented by drug repurposing (DRPx). In this study, thirty compounds with known safety profiles were identified from a chemical library of Phase II-and-up compounds through a combination of SOM Biotech's Artificial Intelligence (AI) technology, SOMAIPRO, and in silico docking calculations with third-party software. The selected compounds were then tested in vitro for inhibitory activity against SARS-CoV-2 main protease (3CLpro or Mpro). Of the thirty compounds, three (cynarine, eravacycline, and prexasertib) displayed strong inhibitory activity against SARS-CoV-2 3CLpro. VeroE6 cells infected with SARS-CoV-2 were used to find the cell protection capability of each candidate. Among the three compounds, only eravacycline showed potential antiviral activities with no significant cytotoxicity. A further study is planned for pre-clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Inteligência Artificial , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais
8.
J Enzyme Inhib Med Chem ; 36(1): 776-784, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33733972

RESUMO

d-Glycero-ß-d-manno-heptose-1-phosphate adenylyltransferase from Burkholderia pseudomallei (BpHldC) is the fourth enzyme in the ADP-l-glycero-ß-d-manno-heptose biosynthesis pathway producing a lipopolysaccharide core. Therefore, BpHldC is an anti-melioidosis target. Three ChemBridge compounds purchased from ChemBridge Corporation (San Diego, CA) were found to have an effective inhibitory activity on BpHldC. Interestingly, ChemBridge 7929959 was the most effective compound due to the presence of the terminal benzyl group. The enzyme kinetic study revealed that most of them show mixed type inhibitory modes against ATP and ßG1P. The induced-fit docking indicated that the medium affinity of ChemBridge 7929959 is originated from its benzyl group occupying the substrate-binding pocket of BpHldC. The inhibitory role of terminal aromatic groups was proven with ChemBridge 7570508. Combined with the previous study, ChemBridge 7929959 is found to work as a dual inhibitor against both HldC and HddC. Therefore, three ChemBridge compounds can be developed as a potent anti-melioidosis agent with a novel inhibitory concept.


Assuntos
Antibacterianos/farmacologia , Burkholderia pseudomallei/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Burkholderia pseudomallei/enzimologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Nucleotidiltransferases/metabolismo
9.
J Enzyme Inhib Med Chem ; 35(1): 1045-1049, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32299265

RESUMO

African swine fever (ASF) caused by the ASF virus (ASFV) is the most hazardous swine disease. Since a huge number of pigs have been slaughtered to avoid a pandemic spread, intense studies on the disease should be followed quickly. Recent studies reported that flavonoids have various antiviral activity including ASFV. In this report, ASFV protease was selected as an antiviral target protein to cope with ASF. With a FRET (Fluorescence resonance energy transfer) method, ASFV protease was assayed with a flavonoid library which was composed of sixty-five derivatives classified based on ten different scaffolds. Of these, the flavonols scaffold contains a potential anti-ASFV protease activity. The most prominent flavonol was myricetin with IC50 of 8.4 µM. Its derivative, myricitrin, with the rhamnoside moiety was also showed the profound inhibitory effect on ASFV protease. These two flavonols apparently provide a way to develop anti-ASFV agents based on their scaffold.


Assuntos
Vírus da Febre Suína Africana/efeitos dos fármacos , Antivirais/farmacologia , Endopeptidases/metabolismo , Flavonoides/farmacologia , Proteínas Virais/antagonistas & inibidores , Vírus da Febre Suína Africana/enzimologia , Antivirais/química , Relação Dose-Resposta a Droga , Endopeptidases/genética , Flavonoides/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
J Enzyme Inhib Med Chem ; 35(1): 1414-1421, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32588669

RESUMO

Frequent occurrences of multi-drug resistance of pathogenic Gram-negative bacteria threaten human beings. The CMP-2-keto-3-deoxy-d-manno-octulosonic acid biosynthesis pathway is one of the new targets for antibiotic design. 2-Keto-3-deoxy-d-manno-octulosonate cytidylyltransferase (KdsB) is the key enzyme in this pathway. KdsB proteins from Burkholderia pseudomallei (Bp), B. thailandensis (Bt), Pseudomonas aeruginosa (Pa), and Chlamydia psittaci (Cp) have been assayed to find inhibitors. Interestingly, Rose Bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein) was turned out to be an inhibitor of three KdsBs (BpKdsB, BtKdsB, and PaKdsB) with promising IC50 values and increased thermostability. The inhibitory enzyme kinetics of Rose Bengal revealed that it is competitive with 2-keto-3-deoxy-manno-octulosonic acid (KDO) but non-competitive against cytidine 5'-triphosphate (CTP). Induced-fit docking analysis of PaKdsB revealed that Arg160 and Arg185 together with other interactions in the substrate binding site seemed to play an important role in binding with Rose Bengal. We suggest that Rose Bengal can be used as the scaffold to develop potential antibiotics.


Assuntos
Antibacterianos/farmacologia , Nucleotidiltransferases/metabolismo , Rosa Bengala/farmacologia , Açúcares Ácidos/química , Estabilidade Enzimática , Concentração Inibidora 50 , Cinética , Nucleotidiltransferases/química , Corantes de Rosanilina/química
11.
J Enzyme Inhib Med Chem ; 35(1): 145-151, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31724441

RESUMO

There were severe panics caused by Severe Acute Respiratory Syndrome (SARS) and Middle-East Respiratory Syndrome-Coronavirus. Therefore, researches targeting these viruses have been required. Coronaviruses (CoVs) have been rising targets of some flavonoids. The antiviral activity of some flavonoids against CoVs is presumed directly caused by inhibiting 3C-like protease (3CLpro). Here, we applied a flavonoid library to systematically probe inhibitory compounds against SARS-CoV 3CLpro. Herbacetin, rhoifolin and pectolinarin were found to efficiently block the enzymatic activity of SARS-CoV 3CLpro. The interaction of the three flavonoids was confirmed using a tryptophan-based fluorescence method, too. An induced-fit docking analysis indicated that S1, S2 and S3' sites are involved in binding with flavonoids. The comparison with previous studies showed that Triton X-100 played a critical role in objecting false positive or overestimated inhibitory activity of flavonoids. With the systematic analysis, the three flavonoids are suggested to be templates to design functionally improved inhibitors.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases/isolamento & purificação , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Flavonoides/síntese química , Flavonoides/química , Humanos , Estrutura Molecular , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Relação Estrutura-Atividade , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
12.
J Enzyme Inhib Med Chem ; 35(1): 1539-1544, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32746637

RESUMO

Coronavirus disease 2019 (COVID-19) has been a pandemic disease of which the termination is not yet predictable. Currently, researches to develop vaccines and treatments is going on globally to cope with this disastrous disease. Main protease (3CLpro) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the good targets to find antiviral agents before vaccines are available. Some flavonoids are known to inhibit 3CLpro from SARS-CoV which causes SARS. Since their sequence identity is 96%, a similar approach was performed with a flavonoid library. Baicalin, herbacetin, and pectolinarin have been discovered to block the proteolytic activity of SARS-CoV-2 3CLpro. An in silico docking study showed that the binding modes of herbacetin and pectolinarin are similar to those obtained from the catalytic domain of SARS-CoV 3CLpro. However, their binding affinities are different due to the usage of whole SARS-CoV-2 3CLpro in this study. Baicalin showed an effective inhibitory activity against SARS-CoV-2 3CLpro and its docking mode is different from those of herbacetin and pectolinarin. This study suggests important scaffolds to design 3CLpro inhibitors to develop antiviral agents or health-foods and dietary supplements to cope with SARS-CoV-2.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Flavonoides/química , Pneumonia Viral/tratamento farmacológico , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Antivirais/química , Betacoronavirus , COVID-19 , Desenho de Fármacos , Transferência Ressonante de Energia de Fluorescência , Humanos , Simulação de Acoplamento Molecular , Pandemias , Poliproteínas , Inibidores de Proteases/química , Ligação Proteica , Conformação Proteica , SARS-CoV-2 , Espectrofotometria , Triptofano/química , Tratamento Farmacológico da COVID-19
13.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906195

RESUMO

d-glycero-α-d-manno-heptose-1-phosphate guanylyltransferase (HddC) is the fourth enzyme synthesizing a building component of lipopolysaccharide (LPS) of Gram-negative bacteria. Since HddC is a potential new target to develop antibiotics, the analysis of the structural and functional relationship of the complex structure will lead to a better idea to design inhibitory compounds. X-ray crystallography and biochemical experiments to elucidate the guanine preference were performed based on the multiple sequence alignment. The crystal structure of HddC from Yersinia pseudotuberculosis (YPT) complexed with guanosine 5'-(ß-amino)-diphosphate (GMPPN) has been determined at 1.55 Å resolution. Meanwhile, the mutants revealed their reduced guanine affinity, instead of acquiring noticeable pyrimidine affinity. The complex crystal structure revealed that GMPPN is docked in the catalytic site with the aid of Glu80 positioning on the conserved motif EXXPLGTGGA. In the HddC family, this motif is expected to recruit nucleotides through interacting with bases. The crystal structure shows that oxygen atoms of Glu80 forming two hydrogen bonds play a critical role in interaction with two nitrogen atoms of the guanine base of GMPPN. Interestingly, the binding of GMPPN induced the formation of an oxyanion hole-like conformation on the L(S/A/G)X(S/G) motif and consequently influenced on inducing a conformational shift of the region around Ser55.


Assuntos
Proteínas de Bactérias/química , Guanosina Trifosfato/química , Nucleotidiltransferases/química , Yersinia pseudotuberculosis/enzimologia , Cristalografia por Raios X , Especificidade por Substrato
14.
Proteins ; 86(1): 124-131, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986923

RESUMO

The crystal structure of HldC from B. pseudomallei (BpHldC), the fourth enzyme of the heptose biosynthesis pathway, has been determined. BpHldC converts ATP and d-glycero-ß-d-manno-heptose-1-phosphate into ADP-d-glycero-ß-d-manno-heptose and pyrophosphate. The crystal structure of BpHldC belongs to the nucleotidyltransferase α/ß phosphodiesterase superfamily sharing a common Rossmann-like α/ß fold with a conserved T/HXGH sequence motif. The invariant catalytic key residues of BpHldC indicate that the core catalytic mechanism of BpHldC may be similar to that of other closest homologues. Intriguingly, a reorientation of the C-terminal helix seems to guide open and close states of the active site for the catalytic reaction.


Assuntos
Burkholderia pseudomallei/enzimologia , Nucleotidiltransferases/química , Domínio Catalítico , Cristalografia por Raios X/métodos , Bases de Dados de Proteínas , Conformação Proteica
15.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 482-487, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29277661

RESUMO

The Gram-negative bacterium Yersinia pseudotuberculosis is the causative agent of yersiniosis. d-glycero-α-d-manno-heptose-1-phosphate guanylyltransferase (HddC) is the fourth enzyme of the GDP-d-glycero-α-d-manno-heptose biosynthesis pathway which is important for the virulence of the microorganism. Therefore, HddC is a potential target of antibiotics against yersiniosis. In this study, HddC from the synthesized HddC gene of Y. pseudotuberculosis has been expressed, purified, crystallized. Synchrotron X-ray data from a selenomethionine-substituted HddC crystal were also collected and its structure was determined at 2.0Å resolution. Structure analyses revealed that it belongs to the glycosyltransferase A type superfamily members with the signature motif GXGXR for nucleotide binding. Despite of remarkable structural similarity, HddC uses GTP for catalysis instead of CTP and UTP which are used for other major family members, cytidylyltransferase and uridylyltransferase, respectively. We suggest that EXXPLGTGGA and L(S/A/G)X(S/G) motifs are probably essential to bind with GTP and a FSFE motif with substrate.


Assuntos
Proteínas de Bactérias/química , Nucleotidiltransferases/química , Domínios Proteicos , Estrutura Secundária de Proteína , Yersinia pseudotuberculosis/enzimologia , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Biocatálise , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Heptoses/metabolismo , Modelos Moleculares , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosfatos/metabolismo , Yersinia pseudotuberculosis/genética
16.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 205-213, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29122686

RESUMO

We have analyzed the crystal structure of the dimeric form of d-glycero-d-manno-heptose-1,7-bisphosphate phosphatase from Burkholderia thailandensis (BtGmhB), catalyzing the removal of the phosphate at the 7 position of d-glycero-d-manno-heptose-1,7-bisphosphate. The crystal structure of BtGmhB revealed a dimeric form caused by a disruption of a short zinc-binding loop. The dimeric BtGmhB structure was induced by triggering the loss of Zn2+via the protonation of cysteine residues at pH 4.8 of the crystallization condition. Similarly, the addition of EDTA also causes the dimerization of BtGmhB. It appears there are two dimeric forms in solution with and without the disulfide bridge mediated by Cys95. The disulfide-free dimer produced by the loss of Zn2+ in the short zinc-binding loop is further converted to a stable disulfide-bonded dimer in vitro. Though the two dimeric forms are reversible, both of them are inactive due to a deformation of the active site. Single and triple mutant experiments confirmed the presence of two dimeric forms in vitro. Phosphatase assay results showed that only a zinc-bound monomeric form contains catalytic activity in contrast to the inactive zinc-free dimeric forms. The monomer-to-dimer transition caused by the loss of Zn2+ observed in this study is an example of reversal phenomenon caused by artificial proteins containing protein engineered zinc-finger motifs where the monomer-to-dimer transitions occurred in the presence of Zn2+. Therefore, this unusual dimerization process may be applicable to designing proteins possessing a short zinc-binding loop with a novel regulatory role.


Assuntos
Proteínas de Bactérias/química , Burkholderia/enzimologia , Monoéster Fosfórico Hidrolases/química , Engenharia de Proteínas , Multimerização Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Estrutura Secundária de Proteína
17.
Appl Microbiol Biotechnol ; 101(11): 4521-4532, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28280867

RESUMO

The ADP-L-glycero-ß-D-manno-heptose and the GDP-6-deoxy-α-D-manno-heptose biosynthesis pathways play important roles in constructing lipopolysaccharide of Gram-negative bacteria. Blocking the pathways is lethal or increases antibiotic susceptibility to pathogens. Therefore, the enzymes involved in the pathways are novel antibiotic drug targets. Here, we designed an efficient method to assay the whole enzymes in the pathways using mass spectrometry and screened 148 compounds. One promising lead is (-)-nyasol targeting D-glycero-α-D-manno-heptose-1-phosphate guanylyltransferase (HddC) included in the GDP-6-deoxy-α-D-manno-heptose biosynthesis pathway from Burkholderia pseudomallei. The inhibitory activity of the lead compound against HddC has been confirmed by blocking the system transferring the guanosine monophosphate (GMP) moiety to α-D-glucose-1-phosphate. (-)-Nyasol exhibits the half maximal inhibitory concentration (IC50) value of 17.6 µM. A further study is going on using (-)-nyasol derivatives to find better leads with high affinity.


Assuntos
Vias Biossintéticas , Burkholderia pseudomallei/enzimologia , Ensaios Enzimáticos/métodos , Heptoses/biossíntese , Burkholderia pseudomallei/efeitos dos fármacos , Concentração Inibidora 50 , Lignanas/farmacologia , Lipopolissacarídeos/biossíntese , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Nucleotidiltransferases/efeitos dos fármacos , Fenóis/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Especificidade por Substrato
18.
Int J Mol Sci ; 18(2)2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28134765

RESUMO

Our previous study showed that dimerized translationally controlled tumor protein (dTCTP) plays a role in the pathogenesis of allergic diseases, such as asthma and allergic rhinitis. A 7-mer peptide, called dTCTP-binding peptide 2 (dTBP2), binds to dTCTP and inhibits its cytokine-like effects. We therefore examined the protective effects of dTBP2 in house dust mite-induced atopic dermatitis (AD)-like skin lesions in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga) mice. We found that topical administration of dTBP2 significantly reduced the AD-like skin lesions formation and mast cell infiltration in NC/Nga mice, similarly to the response seen in the Protopic (tacrolimus)-treated group. Treatment with dTBP2 also decreased the serum levels of IgE and reduced IL-17A content in skin lesions and inhibited the expression of mRNAs of interleukin IL-4, IL-5, IL-6, IL-13, macrophage-derived chemokine (MDC), thymus and activation-regulated chemokine (TARC) and thymic stromal lymphopoietin (TSLP). These findings indicate that dTBP2 not only inhibits the release of Th2 cytokine but also suppresses the production of proinflammatory cytokines in AD-like skin lesions in NC/Nga mice, by inhibiting TCTP dimer, in allergic responses. Therefore, dTCTP is a therapeutic target for AD and dTBP2 appears to have a potential role in the treatment of AD.


Assuntos
Biomarcadores Tumorais/metabolismo , Dermatite Atópica/metabolismo , Animais , Citocinas/metabolismo , Dermatite Atópica/parasitologia , Modelos Animais de Doenças , Feminino , Histamina/metabolismo , Imunoglobulina E/metabolismo , Inflamação/patologia , Interleucina-17/metabolismo , Mastócitos/patologia , Camundongos , Pyroglyphidae/fisiologia , Pele/patologia , Proteína Tumoral 1 Controlada por Tradução
19.
BMC Cancer ; 14: 165, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24606760

RESUMO

BACKGROUND: Translationally controlled tumor protein (TCTP), alternatively called fortilin, is believed to be involved in the development of the chemoresistance of tumor cells against anticancer drugs such as etoposide, taxol, and oxaliplatin, the underlying mechanisms of which still remain elusive. METHODS: Cell death analysis of TCTP-overexpressing HeLa cells was performed following etoposide treatment to assess the mitochondria-dependent apoptosis. Apoptotic pathway was analyzed through measuring the cleavage of epidermal growth factor receptor (EGFR) and phospholipase C-γ (PLC-γ), caspase activation, mitochondrial membrane perturbation, and cytochrome c release by flow cytometry and western blotting. To clarify the role of TCTP in the inhibition of apoptosome, in vitro apoptosome reconstitution and immunoprecipitation was used. Pull-down assay and silver staining using the variants of Apaf-1 protein was applied to identify the domain that is responsible for its interaction with TCTP. RESULTS: In the present study, we confirmed that adenoviral overexpression of TCTP protects HeLa cells from cell death induced by cytotoxic drugs such as taxol and etoposide. TCTP antagonized the mitochondria-dependent apoptotic pathway following etoposide treatment, including mitochondrial membrane damage and resultant cytochrome c release, activation of caspase-9, and -3, and eventually, the cleavage of EGFR and PLC-γ. More importantly, TCTP interacts with the caspase recruitment domain (CARD) of Apaf-1 and is incorporated into the heptameric Apaf-1 complex, and that C-terminal cleaved TCTP specifically associates with Apaf-1 of apoptosome in apoptosome-forming condition thereby inhibiting the amplification of caspase cascade. CONCLUSIONS: TCTP protects the cancer cells from etoposide-induced cell death by inhibiting the mitochondria-mediated apoptotic pathway. Interaction of TCTP with Apaf-1 in apoptosome is involved in the molecular mechanism of TCTP-induced chemoresistance. These findings suggest that TCTP may serve as a therapeutic target for chemoresistance in cancer treatment.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Epistasia Genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Fator Apoptótico 1 Ativador de Proteases/química , Caspase 3/metabolismo , Caspase 9/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Citocromos c/metabolismo , Fragmentação do DNA , Receptores ErbB/genética , Etoposídeo/farmacologia , Expressão Gênica , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfolipase C gama/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Inibidores da Topoisomerase II/farmacologia , Proteína Tumoral 1 Controlada por Tradução
20.
Int J Mol Sci ; 15(3): 4523-30, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24637935

RESUMO

Tnfaip8/oxidative stress regulated gene-α (Oxi-α) is a novel protein expressed specifically in brain dopaminergic neurons and its over-expression has been reported to protect dopaminergic cells against OS-induced cell death. In this study, murine C165S mutant Tnfaip8/Oxi-α has been crystallized and X-ray data have been collected to 1.8 Å using synchrotron radiation. The crystal belonged to the primitive orthorhombic space group P21212, with unit-cell parameters a = 66.9, b = 72.3, c = 93.5 Å. A full structural determination is under way in order to provide insights into the structure-function relationships of this protein.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Mutação de Sentido Incorreto , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa