Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(45): 30781-30789, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29134224

RESUMO

Highly dense CaMn1-xRexO3 (0 ≤ x ≤ 0.04) samples were prepared by solid-state synthesis. The effect of Re doping was assessed by the characterisation of crystal structure, oxygen content, and electrical and thermal transport properties. The oxidation state of the substituted Re was determined by X-ray absorption near edge spectra to be Re7+, and led to expansion of the lattice and an increase in electron carrier concentration due to the formation of Mn3+. The thermal behaviour of the electrical conductivity and the thermopower over a wide temperature range allowed identification of different conduction mechanisms: (1) below 110 K, 3D variable range hopping, (2) between 110 and 650 K, small polaron transport, and (3) above 650 K, activation of carriers over a mobility edge. Evaluation of the power factor expected for different dopant oxidation states as a function of dopant concentration shows that the doping strategy using a heavy heptavalent ion allows accessibility of the peak power factor at lower dopant concentrations, lowering the amount of non-ionised impurities, and therefore improves the electronic substitution efficiency, the ratio of activated carriers over the nominal doping concentration, compared to previously studied dopants. An increased power factor and a reduced lattice thermal conductivity are obtained with a peak figure of merit ZT = 0.16(3) at 947 K for CaMn0.98Re0.02O3. This is an approximately two-fold increase compared to undoped CaMnO3, and is comparable to the highest values reported for highly dense B-site doped CaMnO3.

2.
Inorg Chem ; 53(10): 4803-12, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24787953

RESUMO

Apatite-type oxides ([A(I)4][A(II)6][(BO4)6]O2), particularly those of the rare-earth silicate and germanate systems, are among the more promising materials being considered as alternative solid oxide fuel cell electrolytes. Nonstoichiometric lanthanum silicate and germanate apatites display pure ionic conductivities exceeding those of yttria-stabilized zirconia at moderate temperatures (500-700 °C). In this study, mixed Si/Ge-based apatites were prepared by hydrothermal synthesis under mild conditions rather than the conventional solid-state method at high temperatures. Single-phase and highly crystalline nanosized apatite powders were obtained with the morphology changing across the series from spheres for the Si-based end member to hexagonal rods for the Ge-based end member. Powder X-ray and neutron analysis found all of these apatites to be hexagonal (P63/m). Quantitative X-ray microanalysis established the partial (<15 at%) substitution of La(3+) by Na(+) (introduced from the NaOH hydrothermal reagent), which showed a slight preference to enter the A(I) 4f framework position over the A(II) 6h tunnel site. Moreover, retention of hydroxide (OH(-)) was confirmed by IR spectroscopy and thermogravimetric analysis, and these apatites are best described as oxyhydroxyapatites. To prepare dense pellets for conductivity measurements, both conventional heat treatment and spark plasma sintering methods were compared, with the peculiar features of hydrothermally synthesized apatites and the influence of sodium on the ionic conductivity considered.

3.
Nat Commun ; 12(1): 5561, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548485

RESUMO

The selection of the elements to combine delimits the possible outcomes of synthetic chemistry because it determines the range of compositions and structures, and thus properties, that can arise. For example, in the solid state, the elemental components of a phase field will determine the likelihood of finding a new crystalline material. Researchers make these choices based on their understanding of chemical structure and bonding. Extensive data are available on those element combinations that produce synthetically isolable materials, but it is difficult to assimilate the scale of this information to guide selection from the diversity of potential new chemistries. Here, we show that unsupervised machine learning captures the complex patterns of similarity between element combinations that afford reported crystalline inorganic materials. This model guides prioritisation of quaternary phase fields containing two anions for synthetic exploration to identify lithium solid electrolytes in a collaborative workflow that leads to the discovery of Li3.3SnS3.3Cl0.7. The interstitial site occupancy combination in this defect stuffed wurtzite enables a low-barrier ion transport pathway in hexagonal close-packing.

4.
Adv Mater ; 32(4): e1905200, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31788886

RESUMO

Mixed ionic-electronic conductors (MIECs) that display high oxide ion conductivity (σo ) and electronic conductivity (σe ) constitute an important family of electrocatalysts for a variety of applications including fuel cells and oxygen separation membranes. Often MIECs exhibit sufficient σe but inadequate σo . It has been a long-standing challenge to develop MIECs with both high σo and stability under device operation conditions. For example, the well-known perovskite oxide Ba0.5 Sr0.5 Co0.8 Fe0.2 O3- δ (BSCF) exhibits exceptional σo and electrocatalytic activity. The reactivity of BSCF with CO2 , however, limits its use in practical applications. Here, the perovskite oxide Bi0.15 Sr0.85 Co0.8 Fe0.2 O3- δ (BiSCF) is shown to exhibit not only exceptional bulk transport properties, with a σo among the highest for known MIECs, but also high CO2 tolerance. When used as an oxygen separation membrane, BiSCF displays high oxygen permeability comparable to that of BSCF and much higher stability under CO2 . The combination of high oxide transport properties and CO2 tolerance in a single-phase MIEC gives BiSCF a significant advantage over existing MIECs for practical applications.

5.
Chem Mater ; 31(15): 5742-5758, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32063675

RESUMO

Framework oxides with the capacity to host mobile interstitial oxide anions are of interest as electrolytes in intermediate temperature solid oxide fuel cells (SOFCs). High performance materials of this type are currently limited to the anisotropic oxyapatite and melilite structure types. The langasite structure is based on a corner-shared tetrahedral network similar to that in melilite but is three-dimensionally connected by additional octahedral sites that bridge the layers by corner sharing. Using low-temperature synthesis, we introduce interstitial oxide charge carriers into the La3Ga5-x Ge1+x O14+x/2 langasites, attaining a higher defect content than reported in the lower dimensional oxyapatite and melilite systems in La3Ga3.5Ge2.5O14.75 (x = 1.5). Neutron diffraction and multinuclear solid state 17O and 71Ga NMR, supported by DFT calculations, show that the excess oxygen is accommodated by the formation of a (Ge,Ga)2O8 structural unit, formed from a pair of edge-sharing five-coordinated Ga/Ge square-based pyramidal sites bridged by the interstitial oxide and a strongly displaced framework oxide. This leads to more substantial local deformations of the structure than observed in the interstitial-doped melilite, enabled by the octahedral site whose primary coordination environment is little changed by formation of the pair of square-based pyramids from the originally tetrahedral sites. AC impedance spectroscopy on spark plasma sintered pellets showed that, despite its higher interstitial oxide content, the ionic conductivity of the La3Ga5-x Ge1+x O14+x/2 langasite family is lower than that of the corresponding melilites La1+y Sr1-y Ga3O7+y/2. The cooperative structural relaxation that forms the interstitial-based (Ga,Ge)2O8 units stabilizes higher defect concentrations than the single-site GaO5 trigonal bipyramids found in melilite but effectively traps the charge carriers. This highlights the importance of controlling local structural relaxation in the design of new framework electrolytes and suggests that the propensity of a framework to form extended units around defects will influence its ability to generate high mobility interstitial carriers.

6.
Dalton Trans ; 45(1): 121-33, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26575496

RESUMO

Apatite silicates are attracting significant interest as potential SOFC electrolyte materials. They are non-conventional oxide ion conductors in the sense that oxide ion interstitials, rather than vacancies, are the key defects. In this work we compare the structures of La9.6Si6O26.4 and La8Sr2Si6O26, both before and after hydration in order to gather information about the location of the interstitial oxide ion site. Neutron diffraction structural studies suggest that in the as-prepared La8Sr2Si6O26 and hydrated La8Sr2Si6O26, the interstitial oxide ion sites are close to the apatite channel centre. For La9.6Si6O26.4, a similar site close to the channel centre is observed, but on hydration of this particular sample, the interstitial site is shown to be significantly displaced away from the channel centre towards the SiO4 units. This can be explained by the need for additional displacement from the channel centre to accommodate the large amount of interstitial anions in this hydrated phase. The solid state (29)Si MAS NMR spectra are shown to be very sensitive to the different speciation exhibited by the La8Sr2Si6O26 and La9.6Si6O26.4 systems, with the former being dominated by regular SiO4 framework species and the latter being dominated by interruptions to this network caused by cation vacancies and interstitials. The corresponding (17)O MAS NMR study identifies a strong signal from the O atoms of the SiO4 groups, thus demonstrating that all of the O species in these systems are exchangeable O under heterogeneous gas phase conditions. In addition, interstitial O species attributed to pendant OH linkages on the Si positions are clearly identified and resolved, and these are removed on dehydration. This observation and assignment is corroborated by corresponding (1)H MAS NMR measurements. Overall the neutron diffraction work indicates that the interstitial site location in these apatite silicates depends on the anion content with progressive displacement towards the SiO4 tetrahedra on increasing anion content, while the observation of exchangeable O on the SiO4 groups is consistent with prior modelling predictions as to the importance on the silicate units in the conduction process.

7.
Dalton Trans ; 41(1): 50-3, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22105971

RESUMO

In this paper we presented the X-ray PDF investigation of orthorhombic Ba(2)In(2)O(5) and cubic Ba(2)In(1.7)P(0.3)O(5.3) and Ba(2)In(1.7)S(0.3)O(5.45) samples. Pure Ba(2)In(2)O(5) was found to be properly described-at the local scale-by the orthorhombic average structure. Ba(2)In(1.7)P(0.3)O(5.3) and Ba(2)In(1.7)S(0.3)O(5.45) cannot be described, at the local scale, by a cubic symmetry. The PDFs of these two samples clearly showed a distorted atom arrangement in the short-range which can be described again with the orthorhombic symmetry found in pure barium indate.

8.
Chem Commun (Camb) ; 46(25): 4613-5, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20396814

RESUMO

In this communication, we demonstrate the successful incorporation of phosphate into Ba(2)In(2)O(5), which leads to the conversion from an orthorhombic to a cubic unit cell. The resulting increased oxygen vacancy disorder leads to an enhancement in the oxide ion conductivity at low temperatures. In addition, in wet atmospheres, significant proton conduction is observed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa