RESUMO
Basic helix-loop-helix (bHLH)/HLH transcription factors are involved in various aspects of the growth and development of plants. Here, we identified four HLH genes, PePRE1-4, in moso bamboo plants that are homologous to Arabidopsis PRE genes. In bamboo seedlings, PePRE1/3 were found to be highly expressed in the internode and lamina joint by using quantitative RT-PCR analysis. In the elongating internode of bamboo shoots, PePRE genes are expressed at higher levels in the basal segment than in the mature top segment. Overexpression of PePREs (PePREs-OX) in Arabidopsis showed longer petioles and hypocotyls, as well as earlier flowering. PePRE1 overexpression restored the phenotype due to the deficiency of AtPRE genes caused by artificial micro-RNA. PePRE1-OX plants showed hypersensitivity to propiconazole treatment compared with the wild type. In addition, PePRE1/3 but not PePRE2/4 proteins accumulated as punctate structures in the cytosol, which was disrupted by the vesicle recycling inhibitor brefeldin A (BFA). PePRE genes have a positive function in the internode elongation of moso bamboo shoots, and overexpression of PePREs genes promotes flowering and growth in Arabidopsis. Our findings provided new insights about the fast-growing mechanism of bamboo shoots and the application of PRE genes from bamboo.
Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Poaceae/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
KEY MESSAGE: PSBR1 is a moso bamboo gene negatively regulated by brassinosteroid, which encodes a mitochondrial localized protein. Overexpression of PSBR1 leads to growth inhibition in various growth progresses in Arabidopsis. The young shoot of moso bamboo (Phyllostachys edulis) is known as one of the fastest growing plant organs. The roles of phytohormones in the fast-growth of bamboo shoot are not fully understood. Brassinosteroids (BRs) are a group of growth-promoting steroid hormones that play important roles in cell elongation and division. While BR related genes are highly enriched in fast-growing internodes in moso bamboo, the functions of BR in the fast-growth process is not understood at the molecular level. Here, we identified a poaceae specific gene, PSBR1 (Poaceae specific and BR responsive gene 1) from the moso bamboo genome. PSBR1 was highly expressed in the stem and leaves of bamboo seedling, and the elongating nodes of fast-growing bamboo shoot. PSBR1's expression is increased by BR biosynthesis inhibitor propiconazole but decreased by BR treatment. PSBR1 encodes a novel protein that is localized to the mitochondria in tobacco and bamboo protoplast. The Arabidopsis transgenic plants overexpressing PSBR1 show growth inhibition in both vegetative and reproductive stages. This study suggests that PSBR1 is a BR regulated mitochondrial protein in bamboo, which inhibits plant growth when overexpressed in Arabidopsis.
Assuntos
Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/genética , Proteínas de Plantas/genética , Poaceae/genética , Arabidopsis/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente ModificadasRESUMO
MAIN CONCLUSION: This study demonstrates that brassinosteroid is essential for seedling and shoot growth in moso bamboo. The shoot of moso bamboo is known to grow extremely fast. The roles of phytohormones in such fast growth of bamboo shoot remain unclear. Here we reported that endogenous brassinosteroid (BR) is a major factor promoting bamboo shoot internode elongation. Reducing endogenous brassinosteroid level by its biosynthesis inhibitor propiconazole stunted shoot growth in seedling stage, whereas exogenous BR application promoted scale leaf elongation and the inclination of lamina joint of leaves and scale leaves. Genome-wide transcriptome analysis identified hundreds of genes whose expression levels are altered by BR and propiconazole in shoots and roots of bamboo seedling. The data show that BR regulates cell wall-related genes, hydrogen peroxide catabolic genes, and auxin-related genes. Our study demonstrates an essential role of BR in fast growth bamboo shoots and identifies a large number of BR-responsive genes in bamboo seedlings.
Assuntos
Brassinosteroides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Poaceae/genética , Poaceae/fisiologia , Plântula/genética , Plântula/fisiologia , Transcriptoma/genética , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Poaceae/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Transcriptoma/efeitos dos fármacos , Triazóis/farmacologiaRESUMO
Genetic studies have shown essential functions of O-linked N-acetylglucosamine (O-GlcNAc) modification in plants. However, the proteins and sites subject to this posttranslational modification are largely unknown. Here, we report a large-scale proteomic identification of O-GlcNAc-modified proteins and sites in the model plant Arabidopsis thaliana Using lectin weak affinity chromatography to enrich modified peptides, followed by mass spectrometry, we identified 971 O-GlcNAc-modified peptides belonging to 262 proteins. The modified proteins are involved in cellular regulatory processes, including transcription, translation, epigenetic gene regulation, and signal transduction. Many proteins have functions in developmental and physiological processes specific to plants, such as hormone responses and flower development. Mass spectrometric analysis of phosphopeptides from the same samples showed that a large number of peptides could be modified by either O-GlcNAcylation or phosphorylation, but cooccurrence of the two modifications in the same peptide molecule was rare. Our study generates a snapshot of the O-GlcNAc modification landscape in plants, indicating functions in many cellular regulation pathways and providing a powerful resource for further dissecting these functions at the molecular level.
Assuntos
Acetilglucosamina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Transdução de Sinais/fisiologia , Acilação , Montagem e Desmontagem da Cromatina/fisiologia , Cromatografia de Afinidade , Flores/crescimento & desenvolvimento , Glicosilação , Lectinas/química , Fosforilação , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espectrometria de Massas em TandemRESUMO
A PACLOBUTRAZOL-RESISTANCE (PRE) gene family, consisting of six genes in Arabidopsis thaliana, encodes a group of helix-loop-helix proteins that act in the growth-promoting transcriptional network. To delineate the specific role of each of the PRE genes in organ growth, we took a reverse genetic approach by constructing high order pre loss-of-function mutants of Arabidopsis thaliana. In addition to dwarf vegetative growth, some double or high order pre mutants exhibited defective floral development, resulting in reduced fertility. While pre2pre5 is normally fertile, both pre2pre6 and pre5pre6 showed reduced fertility. Further, the reduced fertility was exacerbated in the pre2pre5pre6 mutant, indicative of the redundant and critical roles of these PREs. Self-pollination assay and scanning electron microscopy analysis showed that the sterility of pre2pre5pre6 was mainly ascribed to the reduced cell elongation of anther filament, limiting access of pollens to stigma. We found that the expression of a subset of flower-development related genes including ARGOS, IAA19, ACS8, and MYB24 was downregulated in the pre2pre5pre6 flowers. Given these results, we propose that PREs, with unequal functional redundancy, take part in the coordinated growth of floral organs, contributing to successful autogamous reproduction in Arabidopsis thaliana.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Pólen/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Família Multigênica/genética , Mutação/genética , Pólen/crescimento & desenvolvimento , Polinização/genética , Triazóis/químicaRESUMO
A smoke-derived compound, karrikin (KAR), and an endogenous but as yet unidentified KARRIKIN INSENSITIVE2 (KAI2) ligand (KL) have been identified as chemical cues in higher plants that impact on multiple aspects of growth and development. Genetic screening of light-signaling mutants in Arabidopsis thaliana has identified a mutant designated as ply2 (pleiotropic long hypocotyl2) that has pleiotropic light-response defects. In this study, we used positional cloning to identify the molecular lesion of ply2 as a missense mutation of KAI2/HYPOSENSITIVE TO LIGHT, which causes a single amino acid substitution, Ala219Val. Physiological analysis and genetic epistasis analysis with the KL-signaling components MORE AXILLARY GROWTH2 (MAX2) and SUPPRESSOR OF MAX2 1 suggested that the pleiotropic phenotypes of the ply2 mutant can be ascribed to a defect in KL-signaling. Molecular and biochemical analyses revealed that the mutant KAI2ply2 protein is impaired in its ligand-binding activity. In support of this conclusion, X-ray crystallography studies suggested that the KAI2ply2 mutation not only results in a narrowed entrance gate for the ligand but also alters the structural flexibility of the helical lid domains. We discuss the structural implications of the Ala219 residue with regard to ligand-specific binding and signaling of KAI2, together with potential functions of KL-signaling in the context of the light-regulatory network in Arabidopsis thaliana.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Hidrolases/metabolismo , Transdução de Sinal Luminoso/efeitos da radiação , Alelos , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Hidrolases/genética , Ligantes , Luz , Mutação de Sentido Incorreto , FenótipoRESUMO
1-Aminocyclopropane-1-carboxylic acid (ACC) is a biosynthetic precursor of ethylene, a gaseous plant hormone which controls a myriad of aspects of development and stress adaptation in higher plants. Here, we identified a mutant in Arabidopsis thaliana, designated as ACC-resistant2 (are2), displaying a dose-dependent resistance to exogenously applied ACC. Physiological analyses revealed that mutation of are2 impaired various aspects of exogenous ACC-induced ethylene responses, while not affecting sensitivity to other plant hormones during seedling development. Interestingly, the are2 mutant was normally sensitive to gaseous ethylene, compared with the wild type. Double mutant analysis showed that the ethylene-overproducing mutations, eto1 or eto3, and the constitutive ethylene signaling mutation, ctr1 were epistatic to the are2 mutation. These results suggest that the are2 mutant is not defective in ethylene biosynthesis or ethylene signaling per se. Map-based cloning of ARE2 demonstrated that LYSINE HISTIDINE TRANSPORTER1 (LHT1), encoding an amino acid transporter, is the gene responsible. An uptake experiment with radiolabeled ACC indicated that mutations of LHT1 reduced, albeit not completely, uptake of ACC. Further, we performed an amino acid competition assay and found that two amino acids, alanine and glycine, known as substrates of LHT1, could suppress the ACC-induced triple response in a LHT1-dependent way. Taken together, these results provide the first molecular genetic evidence supporting that a class of amino acid transporters including LHT1 takes part in transport of ACC, thereby influencing exogenous ACC-induced ethylene responses in A. thaliana.
Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos Cíclicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Alelos , Aminoácidos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Radioisótopos de Carbono , Mapeamento Cromossômico , Clonagem Molecular , Epistasia Genética/efeitos dos fármacos , Etilenos/metabolismo , Etilenos/farmacologia , MutaçãoRESUMO
Background: Human cytomegalovirus (HCMV) is a common herpesvirus that can cause a range of symptoms, from mild conditions such as fevers to severe illnesses like pneumonia. Early and accurate diagnosis of HCMV infection is crucial, particularly for vulnerable populations with limited medical care. However, current diagnostic methods are often expensive, time-consuming, and require skilled technicians. Materials and methods: We developed an HCMV-RPA-CRISPR diagnosis platform for the rapid and cost-effective detection of HCMV infection. This method utilizes recombinase polymerase amplification (RPA) to amplify the HCMV target gene isothermally without the need for thermal cycling equipment. The platform integrates the CRISPR/Cas12a system, significantly enhancing specificity and sensitivity. A total of 13 clinical blood samples were tested to evaluate the platform's effectiveness and accuracy. Additionally, a lateral flow assay (LFA) and fluorescence detection were incorporated for straightforward and rapid visual interpretation of the results. Results: The assay effectively detected concentrations as low as a single copy of the positive control plasmid per microliter in under 1 h, without requiring specialized equipment or training. In clinical sample evaluations, both the fluorescence readout and LFA exhibited 100% sensitivity and specificity, identifying four HCMV-positive and nine HCMV-negative samples. Conclusion: The HCMV-RPA-CRISPR diagnosis platform is comparably effective to qPCR for HCMV diagnosis. Its applicability in common clinical laboratories, clinics, and point-of-care settings, particularly in resource-limited environments, makes it a valuable tool for widespread HCMV screening and diagnosis.
RESUMO
Citrus scab, caused by the fungal pathogen Elsinoë fawcettii, is one of the most important fungal diseases affecting Citrus spp. Citrus scab affects young tissues, including the leaves, twigs, and fruits, and produces severe fruit blemishes that reduce the market value of fresh fruits. To study the molecular responses of satsuma mandarin (C. unshiu) to E. fawcettii, plant hormone-related gene expression was analyzed in response to host-compatible (SM16-1) and host-incompatible (DAR70024) isolates. In the early phase of infection by E. fawcettii, jasmonic acid- and salicylic acid-related gene expression was induced in response to infection with the compatible isolate. However, as symptoms advanced during the late phase of the infection, the jasmonic acid- and salicylic acid-related gene expression was downregulated. The gene expression patterns were compared between compatible and incompatible interactions. As scabs were accompanied by altered tissue growth surrounding the infection site, we conducted gibberellic acid- and abscisic acid-related gene expression analysis and assessed the content of these acids during scab symptom development. Our results showed that gibberellic and abscisic acid-related gene expression and hormonal changes were reduced and induced in response to the infection, respectively. Accordingly, we propose that jasmonic and salicylic acids play a role in the early response to citrus scab, whereas gibberellic and abscisic acids participate in symptom development.
RESUMO
Citrus is the most extensively produced fruit tree crop in the world and is grown in over 130 countries. Fungal diseases in citrus can cause significant losses in yield and quality. An accurate diagnosis is critical for determining the best management practices and preventing future losses. In this study, a Recombinase polymerase amplification (RPA)-clustered regularly interspaced short palindromic repeats (CRISPR)/associated (Cas) system was established with the integration of a lateral flow assay (LFA) readout system for diagnosis of citrus scab. This detection can be completed within 1 h, is highly sensitive and prevents cross-reactions with other common fungal citrus diseases. Furthermore, the detection system is compatible with crude DNA extracted from infected plant tissue. This RPA-CRISPR/Cas12a-LFA system provides a sensitive, rapid, and cost-effective method with promising and significant practical value for point-of-care diagnosis of citrus scab. To our knowledge, this is the first report to establish an RPA- and CRISPR-based method with LFA for fungal diseases in plants.
RESUMO
Development of symbiotic root nodules in legumes involves the induction and repression of numerous genes in conjunction with changes in the level of phytohormones. We have isolated several genes that exhibit differential expression patterns during the development of soybean nodules. One of such genes, which were repressed in mature nodules, was identified as a putative aldo/keto reductase and thus named Glycine max aldo/keto reductase 1 (GmAKR1). GmAKR1 appears to be a close relative of a yeast aldo/keto reductase YakC whose in vivo substrate has not been identified yet. The expression of GmAKR1 in soybean showed a root-specific expression pattern and inducibility by a synthetic auxin analogue 2,4-D, which appeared to be corroborated by presence of the root-specific element and the stress-response element in the promoter region. In addition, constitutive overexpression of GmAKR1 in transgenic soybean hairy roots inhibited nodule development, which suggests that it plays a negative role in the regulation of nodule development. One of the Arabidopsis orthologues of GmAKR1 is the ARF-GAP domain 2 protein, which is a potential negative regulator of vesicle trafficking; therefore GmAKR1 may have a similar function in the roots and nodules of legume plants.
Assuntos
Oxirredutases do Álcool/genética , Glycine max/enzimologia , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Rhizobiaceae/patogenicidade , Nódulos Radiculares de Plantas/enzimologia , Ácido 2,4-Diclorofenoxiacético/farmacologia , Oxirredutases do Álcool/isolamento & purificação , Oxirredutases do Álcool/metabolismo , Aldeído Redutase , Aldo-Ceto Redutases , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herbicidas/farmacologia , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/microbiologia , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/microbiologia , Homologia de Sequência de Aminoácidos , SimbioseRESUMO
1-Aminocyclopropane-1-carboxylic acid (ACC), a biosynthetic precursor of ethylene, has long been proposed to act as a mobile messenger in higher plants. However, little is known about the transport system of ACC. Recently, our genetic characterization of an ACC-resistant mutant with normal ethylene sensitivity revealed that lysine histidine transporter 1 (LHT1) functions as a transporter of ACC. As amino acid transporters might have broad substrate specificity, we hypothesized that other amino acid transporters including LHT1 paralogs might have the ACC-transporter activity. Here, we took a gain-of-function approach by transgenic complementation of lht1 mutant with a selected set of amino acid transporters. When we introduced transgene into the lht1 mutant, the transgenic expression of LHT2, but not of LHT3 or amino acid permease 5 (AAP5), restored the ACC resistance phenotype of the lht1 mutant. The result provides genetic evidence that some, if not all, amino acid transporters in Arabidopsis can function as ACC transporters. In support, when expressed in Xenopus laevis oocytes, both LHT1 and LHT2 exhibited ACC-transporting activity, inducing inward current upon addition of ACC. Interestingly, the transgenic expression of LHT2, but not of LHT3 or AAP5, could also suppress the early senescence phenotypes of the lht1 mutant. Taking together, we propose that plants have evolved a multitude of ACC transporters based on amino acid transporters, which would contribute to the differential distribution of ACC under various spatiotemporal contexts.
RESUMO
Ethylene controls myriad aspects of plant growth throughout developmental stages in higher plants. It has been well established that ethylene-responsive growth entails extensive crosstalk with other plant hormones, particularly auxin. Here, we report a genetic mutation, named 1-aminocyclopropane carboxylic acid (ACC) resistant root1-1 (are1-1) in Arabidopsis thaliana (L.) Heynh. The CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) encodes a Raf-related protein, functioning as an upstream negative regulator of ethylene signaling in Arabidopsis thaliana. We found that the ctr1-1, a kinase-inactive allele exhibited slightly, but significantly, longer root length, compared to ACC-treated wild-type or ctr1-3, a null allele. Our genetic studies unveiled the existence of are1-1 mutation in the ctr1-1 mutant, as a second-site modifier which confers root-specific ethylene-resistance. Based on well-characterized crosstalk between ethylene and auxin during ethylene-responsive root growth, we performed various physiological analyses. Whereas are1-1 displayed normal sensitivity to synthetic auxins, it showed modest resistance to an auxin transport inhibitor, 1-Nnaphthylphthalamic acid. In addition, are1-1 mutant exhibited ectopically altered DR5:GUS activity upon ethylenetreatment. The results implicated the involvement of are1-1 in auxin-distribution, but not in auxin-biosynthesis, -uptake, or -sensitivity. In agreement, are1-1 mutant exhibited reduced gravitropic root growth and defective redistribution of DR5:GUS activity upon gravi-stimulation. Taken together with genetic and molecular analysis, our results suggest that ARE1 defines a novel locus to control ethylene-responsive root growth as well as gravitropic root growth presumably through auxin distribution in Arabidopsis thaliana.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Etilenos/farmacologia , Genes Supressores , Gravitropismo/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases/genética , Alelos , Arabidopsis/efeitos dos fármacos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Gravitropismo/genética , Ácidos Indolacéticos/farmacologia , Mutação/genética , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimentoRESUMO
Flowering on time is a critically important for successful reproduction of plants. Here we report an early-flowering mutant in Arabidopsis thaliana, accelerated flowering 1-1D (afl1-1D) that exhibited pleiotropic developmental defects including semi-dwarfism, curly leaf, and increased branching. Genetic analysis showed that afl1-1D mutant is a single, dominant mutant. Chromosomal mapping indicates that AFL1 resides at the middle of chromosome 4, around which no known flowering-related genes have been characterized. Expression analysis and double mutant studies with late flowering mutants in various floral pathways indicated that elevated FT is responsible for the early-flowering of afl1-1D mutant. Interestingly, not only flowering-related genes, but also several floral homeotic genes were ectopically overexpressed in the afl1-1D mutants in both FT-dependent and -independent manner. The degree of histone H3 Lys27-trimethylation (H3K27me3) was reduced in several chromatin including FT, FLC, AG and SEP3 in the afl1-1D, suggesting that afl1-1D might be involved in chromatin modification. In support, double mutant analysis of afl1-1D and lhp1-4 revealed epistatic interaction between afl1-1D and lhp1-4 in regard to flowering control. Taken together, we propose that AFL1 regulate various aspect of development through chromatin modification, particularly associated with H3K27me3 in A. thaliana.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromatina/metabolismo , Loci Gênicos/genética , Histonas/metabolismo , Lisina/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Epistasia Genética , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Pleiotropia Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Metilação , Mutação/genética , Fenótipo , Mapeamento Físico do CromossomoRESUMO
Nodules are formed on legume roots as a result of signaling between symbiotic partners and in response to the activities of numerous genes. We cloned fragments of differentially expressed genes in spot-inoculated soybean (Glycine max) roots. Many of the induced clones were similar to known genes related to oxidative stress, such as thioredoxin and beta-carotene hydroxylase. The deduced amino acid sequences of full-length soybean cDNAs for thioredoxin and beta-carotene hydroxylase were similar to those in other species. In situ RNA hybridization revealed that the thioredoxin gene is expressed on the pericycle of 2-d-old nodules and in the infected cells of mature nodules, suggesting that thioredoxin is involved in nodule development. The thioredoxin promoter was found to contain a sequence resembling an antioxidant responsive element. When a thioredoxin mutant of yeast was transformed with the soybean thioredoxin gene it became hydrogen peroxide tolerant. These observations prompted us to measure reactive oxygen species levels. These were decreased by 3- to 5-fold in 7-d-old and 27-d-old nodules, coincident with increases in the expression of thioredoxin and beta-carotene hydroxylase genes. Hydrogen peroxide-producing regions identified with cerium chloride were found in uninoculated roots and 2-d-old nodules, but not in 7-d-old and 27-d-old nodules. RNA interference-mediated repression of the thioredoxin gene severely impaired nodule development. These data indicate that antioxidants such as thioredoxin are essential to lower reactive oxygen species levels during nodule development.