Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 135(45): 16872-84, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24128384

RESUMO

Water splitting into H2 and O2 under visible light was achieved using simple organic dyes such as coumarin and carbazole as photosensitizers on an n-type semiconductor for H2 evolution, a tungsten(VI) oxide (WO3) photocatalyst for O2 evolution, and a triiodide/iodide (I3(-)/I(-)) redox couple as a shuttle electron mediator between them. The results on electrochemical measurements revealed that the oxidized states of the dye molecules having an oligothiophene moiety (two or more thiophene rings) in their structures are relatively stable even in water and possess sufficiently long lifetimes to exhibit reversible oxidation-reduction cycles, while the carbazole system required more thiophene rings than the coumarin one to be substantially stabilized. The long lifetimes of the oxidized states enabled these dye molecules to be regenerated to the original states by accepting an electron from the I(-) electron donor even in an aqueous solution, achieving sustained H2 and I3(-) production from an aqueous KI solution under visible light irradiation when they were combined with an appropriate n-type semiconductor, ion-exchangeable layered niobate H4Nb6O17. The use of H4Nb6O17 loaded with Pt cocatalyst inside the interlayer allowed the water reduction to proceed preferentially with a steady rate even in the presence of a considerable amount of I3(-) in the solution, due to the inhibited access of I3(-) to the reduction site, Pt particles inside, by the electrostatic repulsion between the I3(-) anions and the negatively charged (Nb6O17)(4-) layers. It was also revealed that the WO3 particles coloaded with Pt and IrO2 catalysts exhibited higher rates of O2 evolution than the WO3 particles loaded only with Pt in aqueous solutions containing a considerable amount of I(-), which competitively consumes the holes and lowers the rate of O2 evolution on WO3 photocatalysts. The enhanced O2 evolution is certainly due to the improved selectivity of holes toward water oxidation on IrO2 cocatalyst, instead of undesirable oxidation of I(-). Simultaneous evolution of H2 and O2 under visible light was then achieved by combining the Pt/H4Nb6O17 semiconductor sensitized with the dye molecules having an oligothiophene moiety, which can stably generate H2 and I3(-) from an aqueous KI solution, with the IrO2-Pt-loaded WO3 photocatalyst that can reduce the I3(-) back to I(-) and oxidize water to O2.

2.
ACS Omega ; 7(12): 10709-10717, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382317

RESUMO

We aim to achieve resource recycling by capturing and using CO2 generated in a chemical production and disposal process. We focused on CO2 conversion to CO by the reverse water gas shift-chemical looping (RWGS-CL) reaction. This reaction proceeds in two steps (H2 + MO x ⇆ H2O + MO x-1; CO2 + MO x-1 ⇆ CO + MO x ) via a metal oxide that acts as an oxygen carrier. High CO2 conversion can be achieved owing to a low H2O concentration in the second step, which causes an unwanted back reaction (H2 + CO2 ⇆ CO + H2O). However, the RWGS-CL process is difficult to control because of repeated thermochemical redox cycling, and the CO2 and H2 conversion extents vary depending on the metal oxide composition and experimental conditions. In this study, we developed metal oxides and simultaneously optimized experimental conditions to satisfy target CO2 and H2 conversion extents by using machine learning and Bayesian optimization. We used transfer learning to improve the prediction accuracy of the mathematical models by incorporating a data set and knowledge of oxygen vacancy formation energy. Furthermore, we analyzed the RWGS-CL reaction based on the prediction accuracy of each variable and the feature importance of the random forest regression model.

3.
Chem Commun (Camb) ; (24): 3577-9, 2009 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-19521613

RESUMO

Photocatalytic splitting of water into H(2) and O(2) under visible light irradiation is achieved using a coumarin-dye-adsorbed lamellar niobium oxide for hydrogen evolution.

4.
Talanta ; 146: 575-84, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695306

RESUMO

2-(2'-Hydroxyphenyl)benzimidazole derivatives (X-HBIs), modified by various substituents X (X=H, CH3, OH, OCH3, NO2, NHCOCH3, NH2, N(CH3)2), were synthesized and their fluorescent behaviors and equilibriums in aqueous solution were studied. Strong fluorescence attributed to the tautomer emission was observed in aqueous solution at pH 7.4. The fluorescence intensities of the X-HBIs were enhanced selectively by addition of Zn(2+) but not by addition of Na(+), K(+), Mg(2+), Ca(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), and Cu(2+). Additionally, the effective ratiometric fluorescence response to Zn(2+) addition was observed in 5-NH2-HBI and 5-N(Me)2-HBI. The pH-titration and speciation studies proved that the X-HBIs have two or three protonation equilibriums and one complexation equilibrium corresponding to the formation of the [Zn(X-HBI)](+) complex. Further structural studies using extended X-ray absorption fine structure analyses and density functional theory calculations identified the dominant Zn(2+) species as the [Zn(HBI)(H2O)3](+) complex in aqueous solution. Based on the substituent effect on the fluorescence properties of X-HBIs and their Zn(2+) complexes in aqueous solution, the maximum fluorescence excitation and fluorescence wavelengths of both the tautomeric form and the Zn(2+) complexes were dependent on the Hammett substituent constants of X, which was attributed to the change of the π-π* energy gap of HBI by introduction of the substituent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa