Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
EMBO Rep ; 22(1): e50949, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33251722

RESUMO

AMP-activated protein kinase (AMPK) is a multifunctional kinase that regulates microtubule (MT) dynamic instability through CLIP-170 phosphorylation; however, its physiological relevance in vivo remains to be elucidated. In this study, we identified an active form of AMPK localized at the intercalated disks in the heart, a specific cell-cell junction present between cardiomyocytes. A contractile inhibitor, MYK-461, prevented the localization of AMPK at the intercalated disks, and the effect was reversed by the removal of MYK-461, suggesting that the localization of AMPK is regulated by mechanical stress. Time-lapse imaging analysis revealed that the inhibition of CLIP-170 Ser-311 phosphorylation by AMPK leads to the accumulation of MTs at the intercalated disks. Interestingly, MYK-461 increased the individual cell area of cardiomyocytes in CLIP-170 phosphorylation-dependent manner. Moreover, heart-specific CLIP-170 S311A transgenic mice demonstrated elongation of cardiomyocytes along with accumulated MTs, leading to progressive decline in cardiac contraction. In conclusion, these findings suggest that AMPK regulates the cell shape and aspect ratio of cardiomyocytes by modulating the turnover of MTs through homeostatic phosphorylation of CLIP-170 at the intercalated disks.


Assuntos
Proteínas Quinases Ativadas por AMP , Miócitos Cardíacos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Forma Celular , Camundongos , Proteínas Associadas aos Microtúbulos , Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias , Fosforilação
2.
FASEB J ; 35(4): e21495, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33689182

RESUMO

Enhancers regulate gene expressions in a tissue- and pathology-specific manner by altering its activities. Plasma levels of atrial and brain natriuretic peptides, encoded by the Nppa and Nppb, respectively, and synthesized predominantly in cardiomyocytes, vary depending on the severity of heart failure. We previously identified the noncoding conserved region 9 (CR9) element as a putative Nppb enhancer at 22-kb upstream from the Nppb gene. However, its regulatory mechanism remains unknown. Here, we therefore investigated the mechanism of CR9 activation in cardiomyocytes using different kinds of drugs that induce either cardiac hypertrophy or cardiac failure accompanied by natriuretic peptides upregulation. Chronic treatment of mice with either catecholamines or doxorubicin increased CR9 activity during the progression of cardiac hypertrophy to failure, which is accompanied by proportional increases in Nppb expression. Conversely, for cultured cardiomyocytes, doxorubicin decreased CR9 activity and Nppb expression, while catecholamines increased both. However, exposing cultured cardiomyocytes to mechanical loads, such as mechanical stretch or hydrostatic pressure, upregulate CR9 activity and Nppb expression even in the presence of doxorubicin. Furthermore, the enhancement of CR9 activity and Nppa and Nppb expressions by either catecholamines or mechanical loads can be blunted by suppressing mechanosensing and mechanotransduction pathways, such as muscle LIM protein (MLP) or myosin tension. Finally, the CR9 element showed a more robust and cell-specific response to mechanical loads than the -520-bp BNP promoter. We concluded that the CR9 element is a novel enhancer that responds to mechanical loads by upregulating natriuretic peptides expression in cardiomyocytes.


Assuntos
Expressão Gênica/fisiologia , Mecanotransdução Celular/fisiologia , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Animais , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas com Domínio LIM , Camundongos Transgênicos , Proteínas Musculares , Peptídeo Natriurético Encefálico/genética , Peptídeos Natriuréticos/genética , Peptídeos Natriuréticos/metabolismo , Ratos , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
3.
FASEB J ; 34(2): 2041-2054, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31916304

RESUMO

Most eukaryotic cells generate adenosine triphosphate (ATP) through the oxidative phosphorylation system (OXPHOS) to support cellular activities. In cultured cell-based experiments, we recently identified the hypoxia-inducible protein G0/G1 switch gene 2 (G0s2) as a positive regulator of OXPHOS, and showed that G0s2 protects cultured cardiomyocytes from hypoxia. In this study, we examined the in vivo protective role of G0s2 against hypoxia by generating both loss-of-function and gain-of-function models of g0s2 in zebrafish. Zebrafish harboring transcription activator-like effector nuclease (TALEN)-mediated knockout of g0s2 lost hypoxic tolerance. Conversely, cardiomyocyte-specific transgenic zebrafish hearts exhibited strong tolerance against hypoxia. To clarify the mechanism by which G0s2 protects cardiac function under hypoxia, we introduced a mitochondrially targeted FRET-based ATP biosensor into zebrafish heart to visualize ATP dynamics in in vivo beating hearts. In addition, we employed a mosaic overexpression model of g0s2 to compare the contraction and ATP dynamics between g0s2-expressing and non-expressing cardiomyocytes, side-by-side within the same heart. These techniques revealed that g0s2-expressing cardiomyocyte populations exhibited preserved contractility coupled with maintained intra-mitochondrial ATP concentrations even under hypoxic condition. Collectively, these results demonstrate that G0s2 provides ischemic tolerance in vivo by maintaining ATP production, and therefore represents a promising therapeutic target for hypoxia-related diseases.


Assuntos
Proteínas de Ciclo Celular , Transferência Ressonante de Energia de Fluorescência , Isquemia Miocárdica , Miocárdio , Proteínas de Peixe-Zebra , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação Oxidativa , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
FASEB J ; 34(1): 1859-1871, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914602

RESUMO

The respiratory chain (RC) transports electrons to form a proton motive force that is required for ATP synthesis in the mitochondria. RC disorders cause mitochondrial diseases that have few effective treatments; therefore, novel therapeutic strategies are critically needed. We previously identified Higd1a as a positive regulator of cytochrome c oxidase (CcO) in the RC. Here, we test that Higd1a has a beneficial effect by increasing CcO activity in the models of mitochondrial dysfunction. We first demonstrated the tissue-protective effects of Higd1a via in situ measurement of mitochondrial ATP concentrations ([ATP]mito) in a zebrafish hypoxia model. Heart-specific Higd1a overexpression mitigated the decline in [ATP]mito under hypoxia and preserved cardiac function in zebrafish. Based on the in vivo results, we examined the effects of exogenous HIGD1A on three cellular models of mitochondrial disease; notably, HIGD1A improved respiratory function that was coupled with increased ATP synthesis and demonstrated cellular protection in all three models. Finally, enzyme kinetic analysis revealed that Higd1a significantly increased the maximal velocity of the reaction between CcO and cytochrome c without changing the affinity between them, indicating that Higd1a is a positive modulator of CcO. These results corroborate that Higd1a, or its mimic, provides therapeutic options for the treatment of mitochondrial diseases.


Assuntos
Transporte de Elétrons/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Transporte Biológico/fisiologia , Linhagem Celular , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Hipóxia/metabolismo , Cinética , Oxirredução , Respiração , Peixe-Zebra/metabolismo
6.
J Biol Chem ; 294(40): 14562-14573, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31371451

RESUMO

Oxidative phosphorylation generates most of the ATP in respiring cells. ATP is an essential energy source, especially in cardiomyocytes because of their continuous contraction and relaxation. Previously, we reported that G0/G1 switch gene 2 (G0S2) positively regulates mitochondrial ATP production by interacting with FOF1-ATP synthase. G0S2 overexpression mitigates ATP decline in cardiomyocytes and strongly increases their hypoxic tolerance during ischemia. Here, we show that G0S2 protein undergoes proteasomal degradation via a cytosolic molecular triage system and that inhibiting this process increases mitochondrial ATP production in hypoxia. First, we performed screening with a library of siRNAs targeting ubiquitin-related genes and identified RING finger protein 126 (RNF126) as an E3 ligase involved in G0S2 degradation. RNF126-deficient cells exhibited prolonged G0S2 protein turnover and reduced G0S2 ubiquitination. BCL2-associated athanogene 6 (BAG6), involved in the molecular triage of nascent membrane proteins, enhanced RNF126-mediated G0S2 ubiquitination both in vitro and in vivo Next, we found that Glu-44 in the hydrophobic region of G0S2 acts as a degron necessary for G0S2 polyubiquitination and proteasomal degradation. Because this degron was required for an interaction of G0S2 with BAG6, an alanine-replaced G0S2 mutant (E44A) escaped degradation. In primary cultured cardiomyocytes, both overexpression of the G0S2 E44A mutant and RNF126 knockdown effectively attenuated ATP decline under hypoxic conditions. We conclude that the RNF126/BAG6 complex contributes to G0S2 degradation and that interventions to prevent G0S2 degradation may offer a therapeutic strategy for managing ischemic diseases.


Assuntos
Proteínas de Ciclo Celular/genética , Chaperonas Moleculares/genética , Isquemia Miocárdica/genética , Fosforilação Oxidativa , Ubiquitina-Proteína Ligases/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Alanina/genética , Proteínas de Ciclo Celular/química , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
8.
Kidney Int ; 94(1): 72-90, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29716796

RESUMO

Protein carbamylation is a posttranslational modification that can occur non-enzymatically in the presence of high concentrations of urea. Although carbamylation is recognized as a prognostic biomarker, the contribution of protein carbamylation to organ dysfunction remains uncertain. Because vascular calcification is common under carbamylation-prone situations, we investigated the effects of carbamylation on this pathologic condition. Protein carbamylation exacerbated the calcification of human vascular smooth muscle cells (hVSMCs) by suppressing the expression of ectonucleotide pyrophosphate/phosphodiesterase 1 (ENPP1), a key enzyme in the generation of pyrophosphate, which is a potent inhibitor of ectopic calcification. Several mitochondrial proteins were carbamylated, although ENPP1 itself was not identified as a carbamylated protein. Rather, protein carbamylation reduced mitochondrial membrane potential and exaggerated mitochondria-derived oxidative stress, which down-regulated ENPP1. The effects of carbamylation on ectopic calcification were abolished in hVSMCs by ENPP1 knockdown, in mitochondrial-DNA-depleted hVSMCs, and in hVSMCs treated with a mitochondria-targeted superoxide scavenger. We also evaluated the carbamylation effects using ex vivo and in vivo models. The tunica media of a patient with end-stage renal disease was carbamylated. Thus, our findings have uncovered a previously unrecognized aspect of uremia-related vascular pathology.


Assuntos
Falência Renal Crônica/complicações , Diester Fosfórico Hidrolases/metabolismo , Carbamilação de Proteínas , Pirofosfatases/metabolismo , Uremia/complicações , Calcificação Vascular/patologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Falência Renal Crônica/sangue , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Músculo Liso Vascular , Estresse Oxidativo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Ratos , Ratos Sprague-Dawley , Uremia/sangue , Calcificação Vascular/etiologia
9.
Proc Natl Acad Sci U S A ; 112(5): 1553-8, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605899

RESUMO

Cytochrome c oxidase (CcO) is the only enzyme that uses oxygen to produce a proton gradient for ATP production during mitochondrial oxidative phosphorylation. Although CcO activity increases in response to hypoxia, the underlying regulatory mechanism remains elusive. By screening for hypoxia-inducible genes in cardiomyocytes, we identified hypoxia inducible domain family, member 1A (Higd1a) as a positive regulator of CcO. Recombinant Higd1a directly integrated into highly purified CcO and increased its activity. Resonance Raman analysis revealed that Higd1a caused structural changes around heme a, the active center that drives the proton pump. Using a mitochondria-targeted ATP biosensor, we showed that knockdown of endogenous Higd1a reduced oxygen consumption and subsequent mitochondrial ATP synthesis, leading to increased cell death in response to hypoxia; all of these phenotypes were rescued by exogenous Higd1a. These results suggest that Higd1a is a previously unidentified regulatory component of CcO, and represents a therapeutic target for diseases associated with reduced CcO activity.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Bovinos , Complexo IV da Cadeia de Transporte de Elétrons/química , Transferência Ressonante de Energia de Fluorescência , Hipóxia/enzimologia , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/enzimologia , Fosforilação Oxidativa , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 111(1): 273-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344269

RESUMO

The oxidative phosphorylation (OXPHOS) system generates most of the ATP in respiring cells. ATP-depleting conditions, such as hypoxia, trigger responses that promote ATP production. However, how OXPHOS is regulated during hypoxia has yet to be elucidated. In this study, selective measurement of intramitochondrial ATP levels identified the hypoxia-inducible protein G0/G1 switch gene 2 (G0s2) as a positive regulator of OXPHOS. A mitochondria-targeted, FRET-based ATP biosensor enabled us to assess OXPHOS activity in living cells. Mitochondria-targeted, FRET-based ATP biosensor and ATP production assay in a semiintact cell system revealed that G0s2 increases mitochondrial ATP production. The expression of G0s2 was rapidly and transiently induced by hypoxic stimuli, and G0s2 interacts with OXPHOS complex V (FoF1-ATP synthase). Furthermore, physiological enhancement of G0s2 expression prevented cells from ATP depletion and induced a cellular tolerance for hypoxic stress. These results show that G0s2 positively regulates OXPHOS activity by interacting with FoF1-ATP synthase, which causes an increase in ATP production in response to hypoxic stress and protects cells from a critical energy crisis. These findings contribute to the understanding of a unique stress response to energy depletion. Additionally, this study shows the importance of assessing intramitochondrial ATP levels to evaluate OXPHOS activity in living cells.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/metabolismo , Genes de Troca , Fosforilação Oxidativa , Animais , Técnicas Biossensoriais , Bovinos , Sobrevivência Celular , Fase G1 , Células HEK293 , Células HeLa , Humanos , Camundongos , Microscopia Confocal , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Oligomicinas/química , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio , Fosforilação , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Fase de Repouso do Ciclo Celular , Fatores de Tempo
11.
EMBO Rep ; 15(4): 438-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24610369

RESUMO

Toll-like receptor 9 (TLR9) has a key role in the recognition of pathogen DNA in the context of infection and cellular DNA that is released from damaged cells. Pro-inflammatory TLR9 signalling pathways in immune cells have been well investigated, but we have recently discovered an alternative pathway in which TLR9 temporarily reduces energy substrates to induce cellular protection from stress in cardiomyocytes and neurons. However, the mechanism by which TLR9 stimulation reduces energy substrates remained unknown. Here, we identify the calcium-transporting ATPase, SERCA2 (also known as Atp2a2), as a key molecule for the alternative TLR9 signalling pathway. TLR9 stimulation reduces SERCA2 activity, modulating Ca(2+) handling between the SR/ER and mitochondria, which leads to a decrease in mitochondrial ATP levels and the activation of cellular protective machinery. These findings reveal how distinct innate responses can be elicited in immune and non-immune cells--including cardiomyocytes--using the same ligand-receptor system.


Assuntos
Trifosfato de Adenosina/biossíntese , Fibroblastos/fisiologia , Miócitos Cardíacos/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Receptor Toll-Like 9/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , Retículo Endoplasmático/metabolismo , Camundongos , Mitocôndrias/metabolismo , Ligação Proteica , Estresse Fisiológico
12.
Proc Natl Acad Sci U S A ; 110(13): 5109-14, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479602

RESUMO

Toll-like receptors (TLRs) are the central players in innate immunity. In particular, TLR9 initiates inflammatory response by recognizing DNA, imported by infection or released from tissue damage. Inflammation is, however, harmful to terminally differentiated organs, such as the heart and brain, with poor regenerative capacity, yet the role of TLR9 in such nonimmune cells, including cardiomyocytes and neurons, is undefined. Here we uncover an unexpected role of TLR9 in energy metabolism and cellular protection in cardiomyocytes and neurons. TLR9 stimulation reduced energy substrates and increased the AMP/ATP ratio, subsequently activating AMP-activated kinase (AMPK), leading to increased stress tolerance against hypoxia in cardiomyocytes without inducing the canonical inflammatory response. Analysis of the expression profiles between cardiomyocytes and macrophages identified that unc93 homolog B1 (C. elegans) was a pivotal switch for the distinct TLR9 responses by regulating subcellular localization of TLR9. Furthermore, this alternative TLR9 signaling was also found to operate in differentiated neuronal cells. These data propose an intriguing model that the same ligand-receptor can concomitantly increase the stress tolerance in cardiomyocytes and neurons, whereas immune cells induce inflammation upon tissue injury.


Assuntos
Metabolismo Energético/fisiologia , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptor Toll-Like 9/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Cultivadas , Inflamação/genética , Inflamação/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Miócitos Cardíacos/citologia , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Transporte Proteico/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Receptor Toll-Like 9/genética
13.
Mol Ther ; 22(10): 1864-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24930600

RESUMO

Transplantation of bone marrow mesenchymal stromal cells (MSCs) is an emerging treatment for heart failure. We have reported that epicardial placement of MSC-sheets generated using temperature-responsive dishes markedly increases donor MSC survival and augments therapeutic effects in an acute myocardial infarction (MI) model, compared to intramyocardial (IM) injection. This study aims to expand this knowledge for the treatment of ischemic cardiomyopathy, which is likely to be more difficult to treat due to mature fibrosis and chronically stressed myocardium. Four weeks after MI, rats underwent either epicardial MSC-sheet placement, IM MSC injection, or sham treatment. At day 28 after treatment, the cell-sheet group showed augmented cardiac function improvement, which was associated with over 11-fold increased donor cell survival at both days 3 and 28 compared to IM injection. Moreover, the cell-sheet group showed improved myocardial repair, in conjunction with amplified upregulation of a group of reparative factors. Furthermore, by comparing with our own previous data, this study highlighted similar dynamics and behavior of epicardially placed MSCs in acute and chronic stages after MI, while the acute-phase myocardium may be more responsive to the stimuli from donor MSCs. These proof-of-concept data encourage further development of the MSC-sheet therapy for ischemic cardiomyopathy toward clinical application.


Assuntos
Regeneração Tecidual Guiada , Células-Tronco Mesenquimais/citologia , Isquemia Miocárdica/terapia , Pericárdio , Regeneração , Animais , Diferenciação Celular , Sobrevivência Celular , Modelos Animais de Doenças , Células Endoteliais/citologia , Feminino , Masculino , Transplante de Células-Tronco Mesenquimais , Isquemia Miocárdica/fisiopatologia , Ratos , Alicerces Teciduais
14.
Mol Ther ; 21(4): 860-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23358187

RESUMO

Transplantation of bone marrow-derived mesenchymal stromal cells (MSCs) is an emerging treatment for heart failure based on their secretion-mediated "paracrine effects". Feasibility of the scaffoldless cell sheet technique to enhance the outcome of cell transplantation has been reported using other cell types, though the mechanism underpinning the enhancement remains uncertain. We here investigated the role of this innovative technique to amplify the effects of MSC transplantation with a focus on the underlying factors. After coronary artery ligation in rats, syngeneic MSCs were grafted by either epicardial placement of MSC sheets generated using temperature-responsive dishes or intramyocardial (IM) injection. Markedly increased initial retention boosted the presence of donor MSCs persistently after MSC sheet placement although the donor survival was not improved. Most of the MSCs grafted by the cell sheet technique remained resided on the epicardial surface, but the epicardium quickly regressed and new vessels sprouted into the sheets, assuring the permeation of paracrine mediators from MSCs into the host myocardium. In fact, there was augmented upregulation of various paracrine effect-related genes and signaling pathways in the early phase after MSC sheet therapy. Correspondingly, more extensive paracrine effects and resultant cardiac function recovery were achieved by MSC sheet therapy. Further development of this approach towards clinical application is encouraged.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Insuficiência Cardíaca/terapia , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Feminino , Masculino , Células-Tronco Mesenquimais/fisiologia , Ratos
15.
Nat Genet ; 36(2): 123-30, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14730304

RESUMO

Arrhythmogenic right ventricular dysplasia (ARVD) is a hereditary cardiomyopathy that causes sudden death in the young. We found a line of mice with inherited right ventricular dysplasia (RVD) caused by a mutation of the gene laminin receptor 1 (Lamr1). This locus contained an intron-processed retroposon that was transcribed in the mice with RVD. Introduction of a mutated Lamr1 gene into normal mice by breeding or by direct injection caused susceptibility to RVD, which was similar to that seen in the RVD mice. An in vitro study of cardiomyocytes expressing the product of mutated Lamr1 showed early cell death accompanied by alteration of the chromatin architecture. We found that heterochromatin protein 1 (HP1) bound specifically to mutant LAMR1. HP1 is a dynamic regulator of heterochromatin sites, suggesting that mutant LAMR1 impairs a crucial process of transcriptional regulation. Indeed, mutant LAMR1 caused specific changes to gene expression in cardiomyocytes, as detected by gene chip analysis. Thus, we concluded that products of the Lamr1 retroposon interact with HP1 to cause degeneration of cardiomyocytes. This mechanism may also contribute to the etiology of human ARVD.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Receptores de Laminina/genética , Retroelementos/fisiologia , Animais , Displasia Arritmogênica Ventricular Direita/etiologia , Células COS , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Modelos Animais de Doenças , Camundongos , Mutação , Miocárdio/metabolismo , Ratos , Receptores de Laminina/metabolismo
16.
Dev Dyn ; 241(10): 1584-90, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22911638

RESUMO

BACKGROUND: Deep sequencing of single cell-derived cDNAs offers novel insights into oncogenesis and embryogenesis. However, traditional library preparation for RNA-seq analysis requires multiple steps with consequent sample loss and stochastic variation at each step significantly affecting output. Thus, a simpler and better protocol is desirable. The recently developed hyperactive Tn5-mediated library preparation, which brings high quality libraries, is likely one of the solutions. RESULTS AND CONCLUSIONS: Here, we tested the applicability of hyperactive Tn5-mediated library preparation to deep sequencing of single cell cDNA, optimized the protocol, and compared it with the conventional method based on sonication. This new technique does not require any expensive or special equipment, which secures wider availability. A library was constructed from only 100 ng of cDNA, which enables the saving of precious specimens. Only a few steps of robust enzymatic reaction resulted in saved time, enabling more specimens to be prepared at once, and with a more reproducible size distribution among the different specimens. The obtained RNA-seq results were comparable to the conventional method. Thus, this Tn5-mediated preparation is applicable for anyone who aims to carry out deep sequencing for single cell cDNAs.


Assuntos
DNA Complementar/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Transposases , Primers do DNA/genética , Sonicação/métodos
17.
Circulation ; 123(24): 2838-47, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21632490

RESUMO

BACKGROUND: Calcineurin is a calcium-regulated phosphatase that plays a major role in cardiac hypertrophy. We previously described that alternative splicing of the calcineurin Aß (CnAß) gene generates the CnAß1 isoform, with a unique C-terminal region that is different from the autoinhibitory domain present in all other CnA isoforms. In skeletal muscle, CnAß1 is necessary for myoblast proliferation and stimulates regeneration, reducing fibrosis and accelerating the resolution of inflammation. Its role in the heart is currently unknown. METHODS AND RESULTS: We generated transgenic mice overexpressing CnAß1 in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. In contrast to previous studies using an artificially truncated calcineurin, CnAß1 overexpression did not induce cardiac hypertrophy. Moreover, transgenic mice showed improved cardiac function and reduced scar formation after myocardial infarction, with reduced neutrophil and macrophage infiltration and decreased expression of proinflammatory cytokines. Immunoprecipitation and Western blot analysis showed interaction of CnAß1 with the mTOR complex 2 and activation of the Akt/SGK cardioprotective pathway in a PI3K-independent manner. In addition, gene expression profiling revealed that CnAß1 activated the transcription factor ATF4 downstream of the Akt/mTOR pathway to promote the amino acid biosynthesis program, to reduce protein catabolism, and to induce the antifibrotic and antiinflammatory factor growth differentiation factor 15, which protects the heart through Akt activation. CONCLUSIONS: Calcineurin Aß1 shows a unique mode of action that improves cardiac function after myocardial infarction, activating different cardioprotective pathways without inducing maladaptive hypertrophy. These features make CnAß1 an attractive candidate for the development of future therapeutic approaches.


Assuntos
Calcineurina/genética , Coração/fisiologia , Contração Miocárdica/fisiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Calcineurina/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Fibrose , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Miocardite/genética , Miocardite/metabolismo , Miocardite/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Transdução de Sinais/fisiologia
18.
J Phys Chem Lett ; 13(39): 9165-9170, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36166647

RESUMO

Effects of interfacial interactions on the electrocatalytic activity of protein-tethered bilayer lipid membranes (ptBLMs) containing cytochrome c oxidase (CcO) for the oxygen reduction reaction are studied by using protein film electrochemistry and surface-enhanced infrared absorption (SEIRA) spectroscopy. Mammalian CcO was immobilized on a gold electrode via self-assembled monolayers (SAMs) of mixed alkanethiols. The protein orientation on the electrode is controlled by SAM-CcO interactions and is critical to the cytochrome c (cyt c) binding. The CcO-phospholipid and CcO-cyt c interactions modulate the electrocatalytic activity of CcO, and more densely packed ptBLMs show higher electrocatalytic activity. Our study indicates that spectroscopic and electrochemical studies of ptBLMs can provide insights into the effects of relatively weak protein-protein and protein-lipid interactions on the enzymatic activity of transmembrane enzymes.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Ouro , Animais , Biomimética , Citocromos c , Eletrodos , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ouro/química , Bicamadas Lipídicas , Mamíferos/metabolismo , Oxigênio/metabolismo , Fosfolipídeos
19.
Nat Commun ; 13(1): 7591, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481732

RESUMO

Antimicrobial resistance (AMR) is a global health problem. Despite the enormous efforts made in the last decade, threats from some species, including drug-resistant Neisseria gonorrhoeae, continue to rise and would become untreatable. The development of antibiotics with a different mechanism of action is seriously required. Here, we identified an allosteric inhibitory site buried inside eukaryotic mitochondrial heme-copper oxidases (HCOs), the essential respiratory enzymes for life. The steric conformation around the binding pocket of HCOs is highly conserved among bacteria and eukaryotes, yet the latter has an extra helix. This structural difference in the conserved allostery enabled us to rationally identify bacterial HCO-specific inhibitors: an antibiotic compound against ceftriaxone-resistant Neisseria gonorrhoeae. Molecular dynamics combined with resonance Raman spectroscopy and stopped-flow spectroscopy revealed an allosteric obstruction in the substrate accessing channel as a mechanism of inhibition. Our approach opens fresh avenues in modulating protein functions and broadens our options to overcome AMR.


Assuntos
Antibacterianos , Heme , Antibacterianos/farmacologia
20.
Am J Respir Crit Care Med ; 182(12): 1506-15, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20693380

RESUMO

RATIONALE: Peroxisome proliferator-activated receptor (PPAR)-ß/δ is a transcription factor that belongs to the PPAR nuclear hormone receptor family, but the role of PPAR-ß/δ in sepsis is unknown. OBJECTIVES: We investigated the role of PPAR-ß/δ in murine models of LPS-induced organ injury and dysfunction and cecal ligation and puncture (CLP)-induced polymicrobial sepsis. METHODS: Wild-type (WT) and PPAR-ß/δ knockout (KO) mice and C57BL/6 mice were subjected to LPS for 16 hours. C57BL/6 mice received the PPAR-ß/δ agonist GW0742 (0.03 mg/kg intravenously, 1 h after LPS) or GW0742 plus the PPAR-ß/δ antagonist GSK0660 (0.1 mg/kg intravenously, 30 min before LPS). CD-1 mice subjected to CLP received GW0742 or GW0742 plus GSK0660. MEASUREMENTS AND MAIN RESULTS: In PPAR-ß/δ KO mice, endotoxemia exacerbated organ injury and dysfunction (cardiac, renal, and hepatic) and inflammation (lung) compared with WT mice. In C57BL/6 mice subjected to endotoxemia, GW0742 significantly (1) attenuated organ (cardiac and renal) dysfunction and inflammation (lung); (2) increased the phosphorylation of Akt and glycogen synthase kinase (GSK)-3ß; (3) attenuated the increase in extracellular signal-regulated kinase (ERK)1/2 and signal transducer and activator of transcription (STAT)-3 phosphorylation; and (4) attenuated the activation of nuclear factor (NF)-κB and the expression of inducible nitric oxide synthase (iNOS). In CD-1 mice subjected to CLP, GW0742 improved 10-day survival. All the observed beneficial effects of GW0742 were attenuated by the PPAR-ß/δ antagonist GSK0660. CONCLUSIONS: PPAR-ß/δ protects against multiple organ injury and dysfunction, and inflammation caused by endotoxic shock and improves survival in polymicrobial sepsis by a mechanism that may involve activation of Akt and inhibition of GSK-3ß and NF-κB.


Assuntos
PPAR delta/metabolismo , PPAR beta/metabolismo , Choque Séptico/prevenção & controle , Animais , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Choque Séptico/metabolismo , Transdução de Sinais , Sulfonas/farmacologia , Tiazóis/farmacologia , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa