Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Res ; 250: 118489, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373552

RESUMO

In this study, several derivatives of tetraphenylporphyrin were synthesized, each with unique meso-substituent groups including phenyl, methoxyphenyl, butyloxyphenyl, octyloxyphenyl, and dectyloxyphenyl. Additionally, their corresponding copper complexes were prepared and thoroughly characterized. The structural confirmation of all compounds was established through CHN elemental analysis, mass spectrometry, and FT-IR spectroscopy. As the number of carbon atoms in the alkyl long-chain increased, a slight red shift in the electronic absorption band was observed, which was attributed to the electronic influence of the alkyl group. DFT analysis indicated that electron density predominantly localized on the porphyrin ring of both the metal free porphyrins and copper (II) porphyrin complexes, with relatively low electron density in the p orbital of the meso-aryl long-chain substituent group. EPR spectroscopy of the Copper (II) ion complexes revealed signals, indicating their paramagnetic properties. Additionally, the Copper (II) tetraphenylporphyrin (CuTPP) complexes displayed two reversible oxidation peaks at +0.97 V and +1.35 V, whereas other derivatives exhibited lower oxidation potentials. The cytotoxicity of these compounds against MCF-7 cell lines was assessed using MTT assay, revealing cytotoxic effects in all cases. Among them, Copper (II) tetrakis (4-methyloxyphenyl)porphyrin (CuTOMPP) demonstrated the highest potential, with an IC50 value of 32.07 µg/mL.


Assuntos
Cobre , Porfirinas , Cobre/química , Humanos , Células MCF-7 , Porfirinas/química , Porfirinas/farmacologia , Técnicas Eletroquímicas , Neoplasias da Mama/patologia , Feminino
2.
Molecules ; 25(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202787

RESUMO

Chitosan microfibers are widely used in medical applications because they have favorable inherent properties. However, their mechanical properties require further improvement. In the present study, a trimethoxysilane aldehyde (TMSA) crosslinking agent was added to chitosan microfibers to improve their tensile strength. The chitosan microfibers were prepared using a coagulation method. The tensile strength of the chitosan microfibers was improved by crosslinking them with TMSA, even when only a small amount was used (less than 1%). TMSA did not change the orientation of the chitosan molecules. Furthermore, aldehyde derived from TMSA did not remain, and siloxane units were formed in the microfibers.


Assuntos
Aldeídos/química , Quitosana/química , Reagentes de Ligações Cruzadas/química , Silanos/química , Teste de Materiais , Ninidrina/química , Pressão , Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Resistência à Tração , Alicerces Teciduais , Difração de Raios X
3.
Molecules ; 25(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008017

RESUMO

Incorporation of nanocellulose could improve wear resistance of ultra-high molecular weight polyethylene (UHMWPE) for an artificial joint application. Yet, the extremely high melt viscosity of the polymer may constrict the mixing, leading to fillers agglomeration and poor mechanical properties. This study optimized the processing condition of UHMWPE/cellulose nanofiber (CNF) bionanocomposite fabrication in triple screw kneading extruder by using response surface methodology (RSM). The effect of the process parameters-temperature (150-190 °C), rotational speed (30-60 rpm), and mixing time (30-45 min)-on mechanical properties of the bionanocomposites was investigated. Homogenous filler distribution, as confirmed by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analysis, was obtained through the optimal processing condition of 150 °C, 60 rpm, and 45 min. The UHMWPE/CNF bionanocomposites exhibited improved mechanical properties in terms of Young's and flexural modulus by 11% and 19%, respectively, as compared to neat UHMWPE. An insignificant effect was observed when maleic anhydride-grafted-polyethylene (MAPE) was added as compatibilizer. The obtained results proved that homogenous compounding of high melt viscosity UHMWPE with CNF was feasible by optimizing the melt blending processing condition in triple screw kneading extruder, which resulted in improved stiffness, a contributing factor for wear resistance.


Assuntos
Celulose/química , Nanocompostos/química , Nanofibras/química , Polietilenos/química , Análise de Variância , Módulo de Elasticidade , Anidridos Maleicos/química , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Polietileno/química , Temperatura , Resistência à Tração
4.
J Mater Sci Mater Med ; 28(3): 46, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28161832

RESUMO

One of the most important and novel approaches of biomedical engineering is the development of new, effective and non-invasive medical diagnosis abilities, and treatments that have such requirements as advanced technologies for tumor imaging. Gadolinium (Gd) compounds can be used as MRI contrast agents, however the release of Gd3+ ions presents some adverse side effects such as renal failure, pancreatitis or local necrosis. The main aim of the work was the development and optimization of Gadolinium based nanoparticles coated with silica to be used as bioimaging agent. Gd based nanoparticles were prepared through a precipitation method and afterwards, these nanoparticles were covered with silica, using Stöber method with ammonia and functionalized with 3-Aminopropyltriethoxysilane (APTES). Results showed that nanoparticles were homogeneous regarding chemical composition, silica layer thickness, total size and morphology. Also, silica coating was successfully not degraded after 4 weeks at pH 5.5, 6.0 and 7.4, contrary to GdOHCO3 nanoparticles that degraded. Regarding the in vitro cell tests, very good cell proliferation and viability were observed. In conclusion, the results showed that Gd based nanoparticles coated with silica for imaging applications were successfully obtained under a well-controlled method. Furthermore, silica coating may enhance magnetic nanoparticles biosafety because it avoids GdOHCO3 degradation into harmful products (such as Gd3+ ions) at physiological conditions.


Assuntos
Gadolínio/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Dióxido de Silício/química , Engenharia Biomédica , Proliferação de Células , Sobrevivência Celular , Meios de Contraste/química , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Microscopia Eletrônica de Transmissão , Necrose/tratamento farmacológico , Pancreatite/tratamento farmacológico , Propilaminas/química , Insuficiência Renal/tratamento farmacológico , Silanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X
5.
J Mater Sci Mater Med ; 27(10): 152, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27585911

RESUMO

Phosphate groups on materials surfaces are known to contribute to apatite formation upon exposure of the materials in simulated body fluid and improved affinity of the materials for osteoblast-like cells. Typically, polymers containing phosphate groups are organic matrices consisting of apatite-polymer composites prepared by biomimetic process using simulated body fluid. Ca(2+) incorporation into the polymer accelerates apatite formation in simulated body fluid owing because of increase in the supersaturation degree, with respect to apatite in simulated body fluid, owing to Ca(2+) release from the polymer. However, the effects of phosphate content on the Ca(2+) release and apatite-forming abilities of copolymers in simulated body fluid are rather elusive. In this study, a phosphate-containing copolymer prepared from vinylphosphonic acid, 2-hydroxyethyl methacrylate, and triethylene glycol dimethacrylate was examined. The release of Ca(2+) in Tris-NaCl buffer and simulated body fluid increased as the additive amount of vinylphosphonic acid increased. However, apatite formation was suppressed as the phosphate groups content increased despite the enhanced release of Ca(2+) from the polymer. This phenomenon was reflected by changes in the surface zeta potential. Thus, it was concluded that the apatite-forming ability of vinylphosphonic acid-2-hydroxyethyl methacrylate-triethylene glycol dimethacrylate copolymer treated with CaCl2 solution was governed by surface state rather than Ca(2+) release in simulated body fluid.


Assuntos
Apatitas/química , Organofosfonatos/química , Fosfatos/química , Polímeros/química , Compostos de Vinila/química , Líquidos Corporais/química , Substitutos Ósseos , Cálcio/química , Cloreto de Cálcio/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Metacrilatos/química , Microscopia Eletrônica de Varredura , Fósforo/química , Propriedades de Superfície , Temperatura , Difração de Raios X
6.
J Mater Sci Mater Med ; 26(6): 190, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25989935

RESUMO

Pure titanium substrates were chemically oxidized with H2O2 and subsequent thermally oxidized at 400 °C in air to form anatase-type titania layer on their surface. The chemically and thermally oxidized titanium substrate (CHT) was aligned parallel to the counter specimen such as commercially pure titanium (cpTi), titanium alloy (Ti6Al4V) popularly used as implant materials or Al substrate with 0.3-mm gap. Then, they were soaked in Kokubo's simulated body fluid (SBF, pH 7.4, 36.5 °C) for 7 days. XRD and SEM analysis showed that the in vitro apatite-forming ability of the contact surface of the CHT specimen decreased in the order: cpTi > Ti6Al4V > Al. EDX and XPS surface analysis showed that aluminum species were present on the contact surface of the CHT specimen aligned parallel to the counter specimen such as Ti6Al4V and Al. This result indicated that Ti6Al4V or Al specimens released the aluminum species into the SBF under the spatial gap. The released aluminum species might be positively or negatively charged in the SBF and thus can interact with calcium or phosphate species as well as titania layer, causing the suppression of the primary heterogeneous nucleation and growth of apatite on the contact surface of the CHT specimen under the spatial gap. The diffusion and adsorption of aluminum species derived from the half-sized counter specimen under the spatial gap resulted in two dimensionally area-selective deposition of apatite particles on the contact surfaces of the CHT specimen.


Assuntos
Apatitas/química , Titânio/química , Ligas/química , Alumínio/química , Líquidos Corporais , Regeneração Óssea , Materiais Revestidos Biocompatíveis/química , Humanos , Técnicas In Vitro , Teste de Materiais , Nanopartículas Metálicas/química , Espectroscopia Fotoeletrônica , Próteses e Implantes , Espectrometria por Raios X , Propriedades de Superfície , Difração de Raios X
7.
J Mater Sci Mater Med ; 26(8): 222, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26264385

RESUMO

Dry titania layers on air-oxidized titanium substrates have been found to be active enough to cause apatite to be deposited in Kokubo's simulated body fluid (SBF) in narrow confined spaces, such as those in narrow grooves and thin gaps. Such in vitro apatite deposition is the basis of the GRAPE(®) technique. The aim of the present study is to determine why GRAPE conditions favor apatite deposition when laminar SBF flow (at 0.01-0.3 ml/min) passes through a shallow channel (0.5 mm) between a pair of titanium substrates each with a dry layer of titania. Assessing the factors that control the heterogeneous nucleation process led to the proposal of the working hypothesis that there are nucleation pre-embryos, ion assemblies that can be stabilized to form embryos, on the titania layer but that they are removed by the SBF flow. Specimens were subjected to different combinations of processes. One combination was that titania layers were exposed to still or flowing SBF, and the other was that half of a specimen, the inlet or outlet side, was exposed to still or flowing SBF with the other half being covered. The surface morphologies of the specimens were then compared in detail. The conclusion was that exposure to still SBF for 2 days before exposure to flowing SBF was required for apatite to be deposited. Some complicated apatite deposition modes were observed, e.g., apatite was deposited even on areas unexposed to still SBF. All of the results were successfully interpreted using the working hypothesis. The conclusion was that the GRAPE(®) technique depends on the confined space holding pre-embryo and embryo assemblies.


Assuntos
Fosfatos de Cálcio/química , Titânio , Apatitas/química , Materiais Biocompatíveis/química , Líquidos Corporais , Cristalização , Humanos , Técnicas In Vitro , Teste de Materiais , Modelos Químicos , Tamanho da Partícula , Reologia/instrumentação , Soluções , Propriedades de Superfície
8.
J Mater Sci Mater Med ; 25(2): 375-81, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24165799

RESUMO

A recently developed "GRAPE(®) technology" provides titanium or titanium alloy implants with spontaneous apatite-forming ability in vitro, which requires properly designed gaps and optimum heat treatment in air. In this study, titanium alloy and commercially pure (cp) titanium substrates were thermally oxidized in air before aligning pairs of specimens in the GRAPE(®) set-up, i.e., titanium alloy and cp titanium substrates were aligned parallel to each other with optimum gap width (spatial design). A liquid phase deposition (LPD) technique was employed for titania coatings on titanium alloy substrate. Then, they were soaked in Kokubo's simulated body fluid (SBF, pH 7.4, 36.5 °C) for 7 days to confirm the in vitro apatite formation on the substrates under the specific spatial design. Anatase-type titania coatings fabricated by using LPD technique led to the deposition of apatite particles within 7 days and showed apatite X-ray diffraction. On the other hand, thermally oxidized titanium alloy substrate in air and non-treated specimens did not show any apatite X-ray diffraction. These results indicated that the heterogeneous nucleation of apatite induced on anatase-type titania coating prepared by LPD technique when it was aligned parallel to thermally oxidized cp titanium substrate with optimum gap width.


Assuntos
Apatitas , Materiais Revestidos Biocompatíveis , Titânio , Ligas , Microscopia Eletrônica de Varredura , Difração de Raios X
9.
J Biomed Mater Res B Appl Biomater ; 112(8): e35451, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39052003

RESUMO

We have previously reported that a novel bioresorbable self-setting injectable bone paste composed of hydroxyapatite/collagen bone-like nanocomposite (HAp/Col) and (3-glycidoxypropyl)trimethoxysilane (GPTMS) was successfully prepared and was replaced with new bone within 3 months of implantation in defects created in porcine tibia. In this study, the HAp/Col-GPTMS paste was implanted into bone defects in rat tibiae to investigate the initial kinetics and bone tissue response. Even though more than 35% of GPTMS molecules should be eluted rapidly from directly injected pastes according to previously reported cell culture tests, in this study, energy-dispersive X-ray spectrometry did not detect Si (GPTMS) deposition in tissues surrounding the paste at 1 day postimplantation. Further, no abnormal inflammatory responses were observed in the surrounding tissues over the test period for both directly injected and prehardened pastes. Companying these observations with the results of the previous animal test (in which the paste was fully resorbed and was substituted with new bone), the eluted GPTMS resolved in no harm in vivo from the initial to final (completely resorbed) stages. Material resorption rates calculated from X-ray microcomputed tomography (µ-CT) images decreased with increasing in GPTMS concentration. Histological observations indicated that tartrate-resistant acid phosphatase (TRAP) active cells, (assumed to be osteoclasts), exist on the periphery of pastes. This result suggested that the paste was resorbed by osteoclasts in the same way as the HAp/Col. Since a good correlation was observed between TRAP active areas in histological sections and material resorption rate calculated from µ-CT, the TRAP activity coverage ratio offers the possibility to estimate the osteoclastic resorption ratio of materials, which are replaced with bone via bone remodeling process.


Assuntos
Colágeno , Durapatita , Silanos , Animais , Ratos , Durapatita/química , Durapatita/farmacologia , Silanos/química , Silanos/farmacologia , Colágeno/química , Tíbia/metabolismo , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Masculino , Suínos , Teste de Materiais , Ratos Sprague-Dawley , Nanocompostos/química
10.
Biol Pharm Bull ; 36(11): 1670-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24189410

RESUMO

Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.


Assuntos
Substitutos Ósseos/química , Cerâmica/química , Nanocompostos/química , Humanos , Polímeros/química
11.
Biol Pharm Bull ; 36(11): 1683-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24189412

RESUMO

Organic-inorganic hybrids of poly(dimethyl siloxane), gelatin, and chitosan with such silanes as tetraethoxysilane and 3-glycidoxytriethoxysilane are derived via the sol-gel routes. Their biomedical applications are discussed from biomimetic deposition of bone-like apatite, cell culture, and in vivo behavior.


Assuntos
Nanoestruturas/química , Silicatos/química , Animais , Materiais Biocompatíveis/química , Quitosana/química , Gelatina/química , Géis , Humanos
12.
Polymers (Basel) ; 15(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37571166

RESUMO

Silicon (Si) is an essential trace element in the human body and it exists in connective tissue as aqueous orthosilicic acid. Porous chitosan-3-glycidoxypropyltrimethoxysilane (GPTMS) hybrids can regenerate nerve tissue and recover sensor and motor functions. However, the structures and roles of the degradation products with Si extracted from the hybrids in nerve regeneration are not clear. In this study, we prepared porous chitosan-GPTMS hybrids with different amounts of GPTMS to amino groups of chitosan (chitosan:GPTMS = 1:0.5 and 1:1 molar ratios). The structures of the degradation products with Si from the hybrids were examined using time-of-flight mass spectrometry, and biological assessments were conducted in order to evaluate their potential use in the preparation of devices for nerve repair. Glial and motor cell lines and ex vivo explants of dorsal root ganglia were used in this study for evaluating their behavior in the presence of the different degradation products with Si. The structure of the degradation products with Si depended on the starting composition. The results showed that glial cell proliferation was lower in the medium with the higher-molecular-weight degradation products with Si. Moreover, motor cell line differentiation and the neurite outgrowth of dorsal root ganglion explants were improved with the lower-molecular-weight degradation products with Si. The results obtained could be useful for designing a new nerve regeneration scaffold including silicon components.

13.
Pharmaceutics ; 14(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35631697

RESUMO

Chitosan is a cationic polymer that forms polymerized membranes upon reaction with anionic polymers. Chitosan-carboxymethyl cellulose (CMC) capsules are drug delivery carrier candidates whose mechanical strength and permeability must be controlled to achieve sustained release. In this study, the capsules were prepared from chitosan-γ-glycidoxypropyltrimethoxysilane (GPTMS)-CMC. The mechanical stability of the capsules was improved by crosslinking the chitosan with GPTMS. The capsules were then coated with hydroxyapatite (HAp) by alternately soaking them in calcium chloride solution and disodium hydrogen phosphate solution to prevent rapid initial drug release. Cytochrome C (CC), as a model drug, was introduced into the capsules via two routes, impregnation and injection, and then the CC released from the capsules was examined. HAp was found to be deposited on the internal and external surfaces of the capsules. The amount of CC introduced, and the release rate were reduced by the HAp coating. The injection method was found to result in the greatest CC loading.

14.
Sci Technol Adv Mater ; 12(6): 065003, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877463

RESUMO

Silica nanotube fibrous meshes were fabricated as multiple functional matrices for both delivering bone morphological protein-2 (BMP-2) and supporting osteoblast attachment and proliferation. The meshes were fabricated via a collagen-templated sol-gel route and consisted of tubular silica with open ends. BMP-2 was loaded to the meshes by soaking in BMP-2 solution. The meshes effectively enabled the attachment and proliferation of osteoblast MC3T3-E1 cells and delivered bioactive BMP-2 to stimulate cell differentiation. These results demonstrate the potential use of the meshes in bone generation applications.

15.
Polymers (Basel) ; 13(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808445

RESUMO

Chitosan nanofiber has a highly uniform structure of 20-50 nm in diameter and shows high dispersibility in water due to its submicron size and high surface-to-volume ratio. The stacked nanofibers film is useful for breathability because it has a gap with a size of several tens of nm or more. However, the chemical bonds between the nanofibers cannot be broken during use. In this study, the thin films were obtained by filtration of chitosan nanofibers and 3-glycidoxypropyltrimethoxysilane (GPTMS) mixture. The addition of GPTMS changed the wettability, mechanical property and stability in water of the thin films. Bacitracin zinc salt (BZ) has been used for the localized dermatological medicines and loaded in the films. BZ interacted electrostatically with the thin films matrix and the release of BZ was controlled by the amount of GPTMS. A higher released amount of BZ showed higher antibacterial effects toward S. aureus. The film was also tested their toxicity by L929 fibroblasts. The release of less than 11.9 µg of BZ showed antibacterial effects, but were not toxic for fibroblast cells.

16.
Polymers (Basel) ; 13(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513876

RESUMO

The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young's modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young's modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.

17.
J Nanosci Nanotechnol ; 9(6): 3714-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19504908

RESUMO

The use of bone grafts is required to restore skeletal integrity and enhance bone healing of large defects in several areas of regenerative medicine, such as: orthopedic and maxillofacial procedures. Some of these bone grafts can be resorbed in a time controlled way, in order to allow the correct process of natural re-construction of the involved bone tissue to occur. The Bonelike graft is a bone substitute that mimics the inorganic composition of bone; this biomaterial was developed and characterized over the last decade. In a granular form, Bonelike has proved its highly bioactive behavior in medical applications, such as; maxillofacial and orthopedics surgery. The clinical applications in maxillary bone defects indicated a good bone bonding between new formed bone and the Bonelike granules. The purpose of this study was to develop a new injectable system for the application of Bonelike using a resorbable vehicle which may be used in minimal invasive surgery. A new hydrogel derived from chitosan and y-glycidoxypropyltrimethoxysilane (GPTMS) was synthesized and characterized. The mixture derived from chitosan and GPTMS existed in sol state at room temperature and formed a hydrogel at 37 degrees C. The degradability of the hydrogel could be controlled by the concentration of chitosan and GPTMS, and the presence the presence of Bonelike did not affect its degradability. The pH changes caused by the degradation of this hydrogel were small, so it is not expected to cause any deleterious effect in vivo conditions.


Assuntos
Materiais Biocompatíveis , Osso e Ossos , Quitosana/química , Hidrogéis/síntese química , Próteses e Implantes , Silicatos/química , Hidrogéis/química , Microscopia Eletrônica de Varredura , Análise Espectral
18.
Colloids Surf B Biointerfaces ; 179: 334-339, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30986701

RESUMO

Magnetic iron oxides such as magnetite and γ-hematite have attracted considerable attention as thermoseeds for hyperthermia treatment because of their ability to generate heat under an alternating magnetic field. Control of the particle size and their combination with biocompatible polymers are expected to be beneficial for optimization of the nanoparticles. These processes can be accomplished through the synthesis of magnetite in gels, as the network structure of the polymer gel can control the grain growth of the magnetite. However, the effect of the cross-linking density of the gels remains unclear. In this study, we synthesized magnetic iron oxides in situ in chitosan hydrogels with different cross-linking densities and examined the crystalline structure and heat generation under alternating magnetic field. The crystalline phase and amount of magnetite were observed to be dependent on the cross-linking density of the gel, and the heat generation of the nanoparticles was governed by their crystalline structure and particle size rather than solely the amount of formed iron oxide.


Assuntos
Quitosana/química , Reagentes de Ligações Cruzadas/química , Compostos Férricos/química , Hidrogéis/química , Nanopartículas de Magnetita/química , Peso Molecular , Tamanho da Partícula , Temperatura , Difração de Raios X
19.
Polymers (Basel) ; 11(10)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615042

RESUMO

Microporous spheres in a hybrid system consisting of chitosan and γ-glycidoxypropyltrimethoxysilane (GPTMS) have advantages in a range of applications, e.g., as vehicles for cell transplantation and soft tissue defect filling materials, because of their excellent cytocompatibility with various cells. In this study, microporous chitosan-GPTMS spheres were prepared by dropping chitosan-GPTMS precursor sols, with or without a cerium chloride, into liquid nitrogen using a syringe pump. The droplets were then freeze dried to give the pores of size 10 to 50 µm. The cell culture tests showed that L929 fibroblast-like cells migrated into the micropores larger than 50 µm in diameter, whereas MG63 osteoblast-like cells proliferated well and covered the granule surfaces. The spheres with cerium chloride showed antibacterial properties against both gram-negative and gram-positive bacteria.

20.
ACS Omega ; 3(5): 5627-5633, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023925

RESUMO

Chemical modification with specific functional groups has been the conventional method to develop bone-bonding bioactive organic-inorganic hybrids. These materials are attractive as bone substitutes because they are flexible and have a Young's modulus similar to natural bone. Immobilization of sulfonic acid groups (-SO3H) onto the polymer chain is expected to produce such hybrids because these groups induce apatite formation in a simulated body fluid (SBF) and enhance the activity of osteoblast-like cells. Sulfinic acid groups (-SO2H), which are derivatives of -SO3H, can also induce apatite nucleation. However, the structural effects of such sulfur-containing functional groups on apatite formation have not been elucidated. In the present study, apatite formation on Ca2+-modified copolymers containing -SO2H or -SO3H was investigated in a simulated body environment. The copolymer containing Ca2+ and -SO3H promoted Ca2+ release into the SBF and formed apatite faster (1 day) than the copolymer containing Ca2+ and -SO2H (14 days). In contrast, when they were not modified with Ca2+, the copolymer containing only -SO2H deposited the apatite faster (7 days) than that containing only -SO3H (>7 days) in the solution with Ca2+ concentration 1.5 times that of SBF. The former adsorbed larger amounts of Ca2+ than the latter. The measured stability constant of the complex indicated that the interaction of -SO2-···Ca2+ was more stable than that of -SO3-···Ca2+. It was found that both the release and adsorption of Ca2+ governed by the stability played an important role in induction of the apatite formation and that the apatite-forming ability of sulfur-containing functional groups drastically changed by the coexistence of Ca2+.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa