Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Hum Mol Genet ; 32(20): 2950-2965, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37498175

RESUMO

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.


Assuntos
Neurônios Motores , Atrofia Muscular Espinal , Humanos , Camundongos , Animais , Neurônios Motores/metabolismo , Desmina/genética , Desmina/metabolismo , Elastina/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/patologia , Terapia Genética , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
2.
J Biol Chem ; 298(6): 102040, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35595101

RESUMO

The enzyme m1A22-tRNA methyltransferase (TrmK) catalyzes the transfer of a methyl group to the N1 of adenine 22 in bacterial tRNAs. TrmK is essential for Staphylococcus aureus survival during infection but has no homolog in mammals, making it a promising target for antibiotic development. Here, we characterize the structure and function of S. aureus TrmK (SaTrmK) using X-ray crystallography, binding assays, and molecular dynamics simulations. We report crystal structures for the SaTrmK apoenzyme as well as in complexes with methyl donor SAM and co-product product SAH. Isothermal titration calorimetry showed that SAM binds to the enzyme with favorable but modest enthalpic and entropic contributions, whereas SAH binding leads to an entropic penalty compensated for by a large favorable enthalpic contribution. Molecular dynamics simulations point to specific motions of the C-terminal domain being altered by SAM binding, which might have implications for tRNA recruitment. In addition, activity assays for SaTrmK-catalyzed methylation of A22 mutants of tRNALeu demonstrate that the adenine at position 22 is absolutely essential. In silico screening of compounds suggested the multifunctional organic toxin plumbagin as a potential inhibitor of TrmK, which was confirmed by activity measurements. Furthermore, LC-MS data indicated the protein was covalently modified by one equivalent of the inhibitor, and proteolytic digestion coupled with LC-MS identified Cys92 in the vicinity of the SAM-binding site as the sole residue modified. These results identify a cryptic binding pocket of SaTrmK, laying a foundation for future structure-based drug discovery.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , tRNA Metiltransferases , Adenina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Conformação Proteica , RNA de Transferência/metabolismo , S-Adenosilmetionina/metabolismo , Staphylococcus aureus/enzimologia , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
3.
Spinal Cord ; 60(4): 320-325, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34601498

RESUMO

STUDY DESIGN: Explanatory and mechanistic study. OBJECTIVES: A better understanding of the 'whole-body' response following spinal cord injury (SCI) is needed to guide future research aimed at developing novel therapeutic interventions and identifying prognostic indicators for SCI. This study aimed to characterise the blood proteome following contusion or complete SCI compared to a sham injury in rat models. SETTING: United Kingdom. METHODS: Pooled blood samples from one and seven days after a contusion (serum; n = 5) or from 14 days and 112 days post-complete transection SCI (plasma; n = 8) and their sham-injured counterparts were subjected to independent iTRAQ nanoflow liquid chromatography tandem mass-spectrometry proteomic analyses. Pathway analyses of the proteins that were differentially abundant between SCI and their matched sham injured counterparts were completed to indicate biological pathways that may be changed in response to SCI. RESULTS: Eleven and 42 proteins were differentially abundant (≥±2.0 FC; p ≤ 0.05) between the contusion SCI and sham injured animals at 24 h and seven days post-injury, respectively. Seven and tweleve proteins were differentially abundant between complete and sham injured rats at 14 and 112 days post-injury, respectively. Acute-phase response signalling and Liver X Receptor/Retinoic X Receptor activation were identified as differentially regulated pathways in both models of SCI. CONCLUSIONS: We have utilised longitudinal preclinical SCI models to provide an insight into the blood proteome changes that result following SCI and to highlight a number of biological pathways of interest for future studies.


Assuntos
Contusões , Proteoma , Traumatismos da Medula Espinal , Animais , Contusões/sangue , Proteômica/métodos , Ratos , Medula Espinal , Traumatismos da Medula Espinal/sangue
4.
Hum Mol Genet ; 28(21): 3515-3527, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31397869

RESUMO

Cardiac pathology is emerging as a prominent systemic feature of spinal muscular atrophy (SMA), but little is known about the underlying molecular pathways. Using quantitative proteomics analysis, we demonstrate widespread molecular defects in heart tissue from the Taiwanese mouse model of severe SMA. We identify increased levels of lamin A/C as a robust molecular phenotype in the heart of SMA mice and show that lamin A/C dysregulation is also apparent in SMA patient fibroblast cells and other tissues from SMA mice. Lamin A/C expression was regulated in vitro by knockdown of the E1 ubiquitination factor ubiquitin-like modifier activating enzyme 1, a key downstream mediator of SMN-dependent disease pathways, converging on ß-catenin signaling. Increased levels of lamin A are known to increase the rigidity of nuclei, inevitably disrupting contractile activity in cardiomyocytes. The increased lamin A/C levels in the hearts of SMA mice therefore provide a likely mechanism explaining morphological and functional cardiac defects, leading to blood pooling. Therapeutic strategies directed at lamin A/C may therefore offer a new approach to target cardiac pathology in SMA.


Assuntos
Lamina Tipo A/metabolismo , Atrofia Muscular Espinal/metabolismo , Miocárdio/patologia , Animais , Modelos Animais de Doenças , Humanos , Lamina Tipo A/genética , Masculino , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Miocárdio/metabolismo
5.
Mol Psychiatry ; 25(1): 22-36, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735910

RESUMO

The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.


Assuntos
Encéfalo/efeitos dos fármacos , Dieta Ocidental/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Animais , Ansiedade , Encéfalo/metabolismo , Metilação de DNA/efeitos dos fármacos , Depressão , Dieta , Suplementos Nutricionais , Endocanabinoides/metabolismo , Epigênese Genética/genética , Epigenômica/métodos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Gravidez , Receptor CB1 de Canabinoide/efeitos dos fármacos
6.
Angew Chem Int Ed Engl ; 60(26): 14319-14323, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33856715

RESUMO

Introduction of α-N-methylated non-proteinogenic amino acids into peptides can improve their biological activities, membrane permeability and proteolytic stability. This is commonly achieved, in nature and in the lab, by assembling pre-methylated amino acids. The more appealing route of methylating amide bonds is challenging. Biology has evolved an α-N-automethylating enzyme, OphMA, which acts on the amide bonds of peptides fused to its C-terminus. Due to the ribosomal biosynthesis of its substrate, the activity of this enzyme towards peptides with non-proteinogenic amino acids has not been addressed. An engineered OphMA, intein-mediated protein ligation and solid-phase peptide synthesis have allowed us to demonstrate the methylation of amide bonds in the context of non-natural amides. This approach may have application in the biotechnological production of therapeutic peptides.


Assuntos
Aminoácidos/metabolismo , Metiltransferases/metabolismo , Peptídeos/metabolismo , Engenharia de Proteínas , Amidas/química , Amidas/metabolismo , Aminoácidos/química , Metilação , Metiltransferases/química , Peptídeos/química , Conformação Proteica
7.
J Cell Sci ; 131(8)2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29507115

RESUMO

Spinal muscular atrophy (SMA) is an inherited neurodegenerative condition caused by a reduction in the amount of functional survival motor neuron (SMN) protein. SMN has been implicated in transport of mRNA in neural cells for local translation. We previously identified microtubule-dependent mobile vesicles rich in SMN and SNRPB, a member of the Sm family of small nuclear ribonucleoprotein (snRNP)-associated proteins, in neural cells. By comparing the interactomes of SNRPB and SNRPN, a neural-specific Sm protein, we now show that the essential neural protein neurochondrin (NCDN) interacts with Sm proteins and SMN in the context of mobile vesicles in neurites. NCDN has roles in protein localisation in neural cells and in maintenance of cell polarity. NCDN is required for the correct localisation of SMN, suggesting they may both be required for formation and transport of trafficking vesicles. NCDN may have potential as a therapeutic target for SMA together with, or in place of the targeting of SMN expression.This article has an associated First Person interview with the first author of the paper.


Assuntos
Atrofia Muscular Espinal/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Complexo SMN/metabolismo , Células Cultivadas , Humanos
8.
J Neurosci Res ; 98(7): 1417-1432, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32270889

RESUMO

There is a strong correlation between aging and onset of idiopathic Parkinson's disease, but little is known about whether cellular changes occur during normal aging that may explain this association. Here, proteomic and bioinformatic analysis was conducted on the substantia nigra (SN) of rats at four stages of life to identify and quantify protein changes throughout aging. This analysis revealed that proteins associated with cell adhesion, protein aggregation and oxidation-reduction are dysregulated as early as middle age in rats. Glial fibrillary acidic protein (GFAP) was identified as a network hub connecting the greatest number of proteins altered during aging. Furthermore, the isoform of GFAP expressed in the SN varied throughout life. However, the expression levels of the rate-limiting enzyme for dopamine production, tyrosine hydroxylase (TH), were maintained even in the oldest animals, despite a reduction in the number of dopamine neurons in the SN pars compact(SNc) as aging progressed. This age-related increase in TH expression per neuron would likely to increase the vulnerability of neurons, since increased dopamine production would be an additional source of oxidative stress. This, in turn, would place a high demand on support systems from local astrocytes, which themselves show protein changes that could affect their functionality. Taken together, this study highlights key processes that are altered with age in the rat SN, each of which converges upon GFAP. These findings offer insight into the relationship between aging and increased challenges to neuronal viability, and indicate an important role for glial cells in the aging process.


Assuntos
Envelhecimento/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Animais , Astrócitos/metabolismo , Feminino , Masculino , Proteômica , Ratos , Ratos Sprague-Dawley
9.
EMBO J ; 34(1): 36-54, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25430741

RESUMO

A hierarchical hormonal cascade along the hypothalamic-pituitary-adrenal axis orchestrates bodily responses to stress. Although corticotropin-releasing hormone (CRH), produced by parvocellular neurons of the hypothalamic paraventricular nucleus (PVN) and released into the portal circulation at the median eminence, is known to prime downstream hormone release, the molecular mechanism regulating phasic CRH release remains poorly understood. Here, we find a cohort of parvocellular cells interspersed with magnocellular PVN neurons expressing secretagogin. Single-cell transcriptome analysis combined with protein interactome profiling identifies secretagogin neurons as a distinct CRH-releasing neuron population reliant on secretagogin's Ca(2+) sensor properties and protein interactions with the vesicular traffic and exocytosis release machineries to liberate this key hypothalamic releasing hormone. Pharmacological tools combined with RNA interference demonstrate that secretagogin's loss of function occludes adrenocorticotropic hormone release from the pituitary and lowers peripheral corticosterone levels in response to acute stress. Cumulatively, these data define a novel secretagogin neuronal locus and molecular axis underpinning stress responsiveness.


Assuntos
Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Secretagoginas/metabolismo , Estresse Fisiológico/fisiologia , Animais , Corticosterona/genética , Hormônio Liberador da Corticotropina/genética , Masculino , Camundongos , Neurônios/citologia , Núcleo Hipotalâmico Paraventricular/citologia , Hipófise/citologia , Hipófise/metabolismo , Interferência de RNA , Secretagoginas/genética , Transcriptoma/fisiologia
10.
Proc Natl Acad Sci U S A ; 113(31): 8825-30, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439867

RESUMO

The M genome segment of Bunyamwera virus (BUNV)-the prototype of both the Bunyaviridae family and the Orthobunyavirus genus-encodes the glycoprotein precursor (GPC) that is proteolytically cleaved to yield two viral structural glycoproteins, Gn and Gc, and a nonstructural protein, NSm. The cleavage mechanism of orthobunyavirus GPCs and the host proteases involved have not been clarified. In this study, we investigated the processing of BUNV GPC and found that both NSm and Gc proteins were cleaved at their own internal signal peptides (SPs), in which NSm domain I functions as SP(NSm) and NSm domain V as SP(Gc) Moreover, the domain I was further processed by a host intramembrane-cleaving protease, signal peptide peptidase, and is required for cell fusion activities. Meanwhile, the NSm domain V (SP(Gc)) remains integral to NSm, rendering the NSm topology as a two-membrane-spanning integral membrane protein. We defined the cleavage sites and boundaries between the processed proteins as follows: Gn, from residue 17-312 or nearby residues; NSm, 332-477; and Gc, 478-1433. Our data clarified the mechanism of the precursor cleavage process, which is important for our understanding of viral glycoprotein biogenesis in the genus Orthobunyavirus and thus presents a useful target for intervention strategies.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Vírus Bunyamwera/metabolismo , Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Precursores de Proteínas/metabolismo , Serina Endopeptidases/metabolismo , Células A549 , Animais , Sítios de Ligação/genética , Vírus Bunyamwera/genética , Vírus Bunyamwera/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Glicoproteínas/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Precursores de Proteínas/genética , Proteólise , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
11.
J Biol Chem ; 292(41): 17084-17092, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28860189

RESUMO

Extracellular vesicles (EVs) are released by most cell types and have been associated with multiple immunomodulatory functions. MHC class I molecules have crucial roles in antigen presentation and in eliciting immune responses and are known to be incorporated into EVs. However, the MHC class I immunopeptidome of EVs has not been established. Here, using a small-scale immunoisolation of the antigen serotypes HLA-A*02:01 and HLA-B*27:05 expressed on the Epstein-Barr virus-transformed B cell line Jesthom and MS of the eluted peptides from both cells and EVs, we identified 516 peptides that bind either HLA-A*02:01 or HLA-B*27:05. Of importance, the predicted serotype-binding affinities and peptide-anchor motifs did not significantly differ between the peptide pools isolated from cells or EVs, indicating that during EV biogenesis, no obvious editing of the MHC class I immunopeptidome occurs. These results, for the first time, establish EVs as a source of MHC class I peptides that can be used for the study of the immunopeptidome and in the discovery of potential neoantigens for immunotherapies.


Assuntos
Antígenos/química , Linfócitos B/química , Antígeno HLA-A2/química , Antígeno HLA-B27/química , Peptídeos/química , Antígenos/imunologia , Linfócitos B/imunologia , Linhagem Celular Transformada , Antígeno HLA-A2/imunologia , Antígeno HLA-B27/imunologia , Humanos , Peptídeos/imunologia
12.
EMBO J ; 33(7): 668-85, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24469251

RESUMO

Children exposed in utero to cannabis present permanent neurobehavioral and cognitive impairments. Psychoactive constituents from Cannabis spp., particularly Δ(9)-tetrahydrocannabinol (THC), bind to cannabinoid receptors in the fetal brain. However, it is unknown whether THC can trigger a cannabinoid receptor-driven molecular cascade to disrupt neuronal specification. Here, we show that repeated THC exposure disrupts endocannabinoid signaling, particularly the temporal dynamics of CB1 cannabinoid receptor, to rewire the fetal cortical circuitry. By interrogating the THC-sensitive neuronal proteome we identify Superior Cervical Ganglion 10 (SCG10)/stathmin-2, a microtubule-binding protein in axons, as a substrate of altered neuronal connectivity. We find SCG10 mRNA and protein reduced in the hippocampus of midgestational human cannabis-exposed fetuses, defining SCG10 as the first cannabis-driven molecular effector in the developing cerebrum. CB1 cannabinoid receptor activation recruits c-Jun N-terminal kinases to phosphorylate SCG10, promoting its rapid degradation in situ in motile axons and microtubule stabilization. Thus, THC enables ectopic formation of filopodia and alters axon morphology. These data highlight the maintenance of cytoskeletal dynamics as a molecular target for cannabis, whose imbalance can limit the computational power of neuronal circuitries in affected offspring.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Dronabinol/farmacologia , Hipocampo/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Psicotrópicos/farmacologia , Receptor CB1 de Canabinoide/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Feminino , Feto/anormalidades , Feto/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Hipocampo/embriologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Gravidez , Proteômica , RNA Mensageiro/genética , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Estatmina , Fatores de Tempo
13.
Exp Eye Res ; 172: 21-29, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29580721

RESUMO

Age-related macular degeneration (AMD) is associated with the formation of sub-retinal pigment epithelial (RPE) deposits that block circulatory exchange with the retina. The factors that contribute to deposit formation are not well understood. Recently, we identified the presence of spherular hydroxyapatite (HAP) structures within sub-RPE deposits to which several AMD-associated proteins were bound. This suggested that protein binding to HAP represents a potential mechanism for the retention of proteins in the sub-RPE space. Here we performed quantitative proteomics using Sequential Window Acquisition of all THeoretical fragment-ion spectra-Mass Spectrometry (SWATH-MS) on plasma samples from 23 patients with late-stage neovascular AMD following HAP-binding. Individuals were genotyped for the high risk CFH variant (T1277C) and binding to HAP was compared between wild type and risk variants. From a library of 242 HAP binding plasma proteins (1% false discovery rate), SWATH-MS revealed significant quantitative differences in the abundance of 32 HAP-binding proteins (p < 0.05) between the two homozygous groups. The concentrations of six proteins (FHR1, FHR3, APOC4, C4A, C4B and PZP) in the HAP eluted fractions and whole plasma were further analysed using ELISA and their presence in sections from human cadaver eyes was examined using immunofluorescence. All six proteins were found to be present in the RPE/choroid interface, and four of these (FHR1, FHR3, APOC4 and PZP) were associated with spherules in sub-RPE space. This study provides qualitative and quantitative information relating to the degree by which plasma proteins may contribute to sub-RPE deposit formation through binding to HAP spherules and how genetic differences might contribute to deposit formation.


Assuntos
Proteínas Sanguíneas/metabolismo , Durapatita/metabolismo , Degeneração Macular Exsudativa/sangue , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Proteínas Sanguíneas/genética , Fator H do Complemento/genética , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Técnicas de Genotipagem , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Ligação Proteica , Proteômica , Degeneração Macular Exsudativa/genética
14.
Mol Cell Neurosci ; 69: 12-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26370173

RESUMO

Understanding the intra- and extracellular proteins involved in the development of the corticospinal tract (CST) may offer insights into how the pathway could be regenerated following traumatic spinal cord injury. Currently, however, little is known about the proteome of the developing corticospinal system. The present study, therefore, has used quantitative proteomics and bioinformatics to detail the protein profile of the rat CST during its formation in the spinal cord. This analysis identified increased expression of 65 proteins during the early ingrowth of corticospinal axons into the spinal cord, and 36 proteins at the period of heightened CST growth. A majority of these proteins were involved in cellular assembly and organization, with annotations being most highly associated with cytoskeletal organization, microtubule dynamics, neurite outgrowth, and the formation, polymerization and quantity of microtubules. In addition, 22 proteins were more highly expressed within the developing CST in comparison to other developing white matter tracts of the spinal cord of age-matched animals. Of these differentially expressed proteins, only one, stathmin 1 (a protein known to be involved in microtubule dynamics), was both highly enriched in the developing CST and relatively sparse in other developing descending and ascending spinal tracts. Immunohistochemical analyses of the developing rat spinal cord and fetal human brain stem confirmed the enriched pattern of stathmin expression along the developing CST, and in vitro growth assays of rat corticospinal neurons showed a reduced length of neurite processes in response to pharmacological perturbation of stathmin activity. Combined, these findings suggest that stathmin activity may modulate axonal growth during development of the corticospinal projection, and reinforces the notion that microtubule dynamics could play an important role in the generation and regeneration of the CST.


Assuntos
Axônios/metabolismo , Regeneração Nervosa/fisiologia , Neuritos/metabolismo , Neurônios/citologia , Tratos Piramidais/metabolismo , Estatmina/metabolismo , Animais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo
15.
Chembiochem ; 14(5): 564-7, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23483642

RESUMO

Ringing the changes: Selenazolines have applications in medicinal chemistry, but their synthesis is challenging. We report a new convenient and less toxic route to these heterocycles that starts from commercially available selenocysteine. The new route depends on a heterocyclase enzyme that creates oxazolines and thiazolines from serines/threonines and cysteines.


Assuntos
Complexos Multienzimáticos/metabolismo , Selênio/química , Sequência de Aminoácidos , Cisteína/química , Cisteína/metabolismo , Iodoacetamida/química , Oxazóis/química , Oxazóis/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Selênio/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Serina/química , Serina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tiazóis/química , Tiazóis/metabolismo , Treonina/química , Treonina/metabolismo
16.
Nat Chem ; 15(4): 560-568, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894702

RESUMO

Ribosomally synthesized and post-translationally modified peptide natural products have provided many highly unusual scaffolds. This includes the intriguing alkaloids crocagins, which possess a tetracyclic core structure and whose biosynthesis has remained enigmatic. Here we use in vitro experiments to demonstrate that three proteins, CgnB, CgnC and CgnE, are sufficient for the production of the hallmark tetracyclic crocagin core from the precursor peptide CgnA. The crystal structures of the homologues CgnB and CgnE reveal them to be the founding members of a peptide-binding protein family and allow us to rationalize their distinct functions. We further show that the hydrolase CgnD liberates the crocagin core scaffold, which is subsequently N-methylated by CgnL. These insights allow us to propose a biosynthetic scheme for crocagins. Bioinformatic analyses based on these data led to the discovery of related biosynthetic pathways that may provide access to a structurally diverse family of peptide-derived pyrroloindoline alkaloids.


Assuntos
Proteínas , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Zinco/química , Zinco/metabolismo , Multimerização Proteica , Modelos Moleculares , Estrutura Terciária de Proteína , Estrutura Quaternária de Proteína , Biocatálise
17.
Antibiotics (Basel) ; 11(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36358122

RESUMO

The aim of the study was to determine the efficacy of carbapenem-only combination treatments derived from four approved drugs (meropenem, doripenem, ertapenem and imipenem) against a MDR strain of P. aeruginosa in a Galleria mellonella larvae infection model. G. mellonella larvae were infected with P. aeruginosa NCTC 13437 (carrying the VIM 10 carbapenamase) and the efficacy of the six possible dual, four triple, and one quadruple carbapenem combination(s) were compared to their constituent monotherapies. Four of these combinations showed significantly enhanced survival compared to monotherapies and reduced the bacterial burden inside infected larvae but without complete elimination. Bacteria that survived combination therapy were slower growing, less virulent but with unchanged carbapenem MICs-observations that are consistent with a persister phenotype. In vitro time-kill assays confirmed that the combinations were bactericidal and confirmed that a low number of bacteria survived exposure. Mass spectrometry was used to quantify changes in the concentration of carbapenems in the presence of carbapenemase-carrying P. aeruginosa. The rate of degradation of individual carbapenems was altered, and often significantly reduced, when the drugs were in combinations compared with the drugs alone. These differences may account for the enhanced inhibitory effects of the combinations against carbapenem-resistant P. aeruginosa and are consistent with a 'shielding' hypothesis. In conclusion, carbapenem combinations show promise in combating MDR P. aeruginosa and are worthy of additional study and development.

18.
Cells ; 11(17)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36078032

RESUMO

Most research to characterise the molecular consequences of spinal muscular atrophy (SMA) has focused on SMA I. Here, proteomic profiling of skin fibroblasts from severe (SMA I), intermediate (SMA II), and mild (SMA III) patients, alongside age-matched controls, was conducted using SWATH mass spectrometry analysis. Differentially expressed proteomic profiles showed limited overlap across each SMA type, and variability was greatest within SMA II fibroblasts, which was not explained by SMN2 copy number. Despite limited proteomic overlap, enriched canonical pathways common to two of three SMA severities with at least one differentially expressed protein from the third included mTOR signalling, regulation of eIF2 and eIF4 signalling, and protein ubiquitination. Network expression clustering analysis identified protein profiles that may discriminate or correlate with SMA severity. From these clusters, the differential expression of PYGB (SMA I), RAB3B (SMA II), and IMP1 and STAT1 (SMA III) was verified by Western blot. All SMA fibroblasts were transfected with an SMN-enhanced construct, but only RAB3B expression in SMA II fibroblasts demonstrated an SMN-dependent response. The diverse proteomic profiles and pathways identified here pave the way for studies to determine their utility as biomarkers for patient stratification or monitoring treatment efficacy and for the identification of severity-specific treatments.


Assuntos
Atrofia Muscular Espinal , Proteoma , Western Blotting , Fibroblastos/metabolismo , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteoma/metabolismo , Proteômica
19.
J Proteomics ; 266: 104684, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35842220

RESUMO

Oesophageal adenocarcinoma (OAC) is an aggressive cancer with a five-year survival of <15%. Current chemotherapeutic strategies only benefit a minority (20-30%) of patients and there are no methods available to differentiate between responders and non-responders. We performed quantitative proteomics using Sequential Window Acquisition of all THeoretical fragment-ion spectra-Mass Spectrometry (SWATH-MS) on albumin/IgG-depleted and non-depleted plasma samples from 23 patients with locally advanced OAC prior to treatment. Individuals were grouped based on tumour regression (TRG) score (TRG1/2/3 vs TRG4/5) after chemotherapy, and differentially abundant proteins were compared. Protein depletion of highly abundant proteins led to the identification of around twice as many proteins. SWATH-MS revealed significant quantitative differences in the abundance of several proteins between the two groups. These included complement c1q subunit proteins, C1QA, C1QB and C1QC, which were of higher abundance in the low TRG group. Of those that were found to be of higher abundance in the high TRG group, glutathione S-transferase pi (GSTP1) exhibited the lowest p-value and highest classification accuracy and Cohen's kappa value. Concentrations of these proteins were further examined using ELISA-based assays. This study provides quantitative information relating to differences in the plasma proteome that underpin response to chemotherapeutic treatment in oesophageal cancers. SIGNIFICANCE: Oesophageal cancers, including oesophageal adenocarcinoma (OAC) and oesophageal gastric junction cancer (OGJ), are one of the leading causes of cancer mortality worldwide. Curative therapy consists of surgery, either alone or in combination with adjuvant or neoadjuvant chemotherapy or radiation, or combination chemoradiotherapy regimens. There are currently no clinico-pathological means of predicting which patients will benefit from chemotherapeutic treatments. There is therefore an urgent need to improve oesophageal cancer disease management and treatment strategies. This work compared proteomic differences in OAC patients who responded well to chemotherapy as compared to those who did not, using quantitative proteomics prior to treatment commencement. SWATH-MS analysis of plasma (with and without albumin/IgG-depletion) from OAC patients prior to chemotherapy was performed. This approach was adopted to determine whether depletion offered a significant improvement in peptide coverage. Resultant datasets demonstrated that depletion increased peptide coverage significantly. Additionally, there was good quantitative agreement between commonly observed peptides. Data analysis was performed by adopting both univariate as well as multivariate analysis strategies. Differentially abundant proteins were identified between treatment response groups based on tumour regression grade. Such proteins included complement C1q sub-components and GSTP1. This study provides a platform for further work, utilising larger sample sets across different treatment regimens for oesophageal cancer, that will aid the development of 'treatment response prediction assays' for stratification of OAC patients prior to chemotherapy.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias Gástricas , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Albuminas , Proteínas Sanguíneas/uso terapêutico , Complemento C1q/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Humanos , Imunoglobulina G , Proteômica/métodos , Neoplasias Gástricas/patologia , Resultado do Tratamento
20.
Angew Chem Weinheim Bergstr Ger ; 133(26): 14440-14444, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38505374

RESUMO

Introduction of α-N-methylated non-proteinogenic amino acids into peptides can improve their biological activities, membrane permeability and proteolytic stability. This is commonly achieved, in nature and in the lab, by assembling pre-methylated amino acids. The more appealing route of methylating amide bonds is challenging. Biology has evolved an α-N-automethylating enzyme, OphMA, which acts on the amide bonds of peptides fused to its C-terminus. Due to the ribosomal biosynthesis of its substrate, the activity of this enzyme towards peptides with non-proteinogenic amino acids has not been addressed. An engineered OphMA, intein-mediated protein ligation and solid-phase peptide synthesis have allowed us to demonstrate the methylation of amide bonds in the context of non-natural amides. This approach may have application in the biotechnological production of therapeutic peptides.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa