Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(20): e202403092, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415808

RESUMO

The hydrogenolysis of oxygenates such as alcohols and ethers is central to the biomass valorization and also a valuable transformation in organic synthesis. However, a mild and efficient catalyst system for the hydrogenolysis of a large variety of alcohols and ethers with various functional groups is still underdeveloped. Here, we report an aluminum metaphosphate-supported Pt nanoparticles (Pt/Al(PO3)3) for the hydrogenolysis of a wide variety of primary, secondary, and tertiary alkyl and benzylic alcohols, and dialkyl, aryl alkyl, and diaryl ethers, including biomass-derived furanic compounds, under mild conditions (0.1-1 atm of H2, as low as 70 °C). Mechanistic studies suggested that H2 induces formation of the surface Brønsted acid sites via its cleavage by supported Pt nanoparticles. Accordingly, the high efficiency and the wide applicability of the catalyst system are attributed to the activation and cleavage of C-O bonds by the hydrogen-induced Brønsted acid sites with the assistance of Lewis acidic Al sites on the catalyst surface. The high efficiency of the catalyst implies its potential application in energy-efficient biomass valorization or fine chemical synthesis.

2.
J Am Chem Soc ; 145(8): 4613-4625, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802588

RESUMO

Since C(sp3)-O bonds are a ubiquitous chemical motif in both natural and artificial organic molecules, the universal transformation of C(sp3)-O bonds will be a key technology for achieving carbon neutrality. We report herein that gold nanoparticles supported on amphoteric metal oxides, namely, ZrO2, efficiently generated alkyl radicals via homolysis of unactivated C(sp3)-O bonds, which consequently promoted C(sp3)-Si bond formation to give diverse organosilicon compounds. A wide array of esters and ethers, which are either commercially available or easily synthesized from alcohols participated in the heterogeneous gold-catalyzed silylation by disilanes to give diverse alkyl-, allyl-, benzyl-, and allenyl silanes in high yields. In addition, this novel reaction technology for C(sp3)-O bond transformation could be applied to the upcycling of polyesters, i.e., the degradation of polyesters and the synthesis of organosilanes were realized concurrently by the unique catalysis of supported gold nanoparticles. Mechanistic studies corroborated the notion that the generation of alkyl radicals is involved in C(sp3)-Si coupling and the cooperation of gold and an acid-base pair on ZrO2 is responsible for the homolysis of stable C(sp3)-O bonds. The high reusability and air tolerance of the heterogeneous gold catalysts as well as a simple, scalable, and green reaction system enabled the practical synthesis of diverse organosilicon compounds.

3.
Angew Chem Int Ed Engl ; 60(2): 624-629, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33078542

RESUMO

The heterogeneous metal-organic framework Bi-BTC successfully catalyzed the synthesis of para-xylene from bio-based 2,5-dimethylfuran and acrylic acid in a promising yield (92 %), under relatively mild conditions (160 °C, 10 bar), and with a low reaction-energy barrier (47.3 kJ mol-1 ). The proposed reaction strategy also demonstrates a remarkable versatility for furan derivatives such as furan and 2-methylfuran.

4.
J Am Chem Soc ; 141(4): 1636-1645, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30592417

RESUMO

Sulfo-functionalized siloxane gels with a variety of surface hydrophobicities were fabricated to elucidate the effect of the environment surrounding the Brønsted acid site on their catalytic activity for the hydrolysis of organic molecules. A detailed structural analysis of these siloxane gels by elemental analysis, X-ray photoelectron spectroscopy, Fourier-transformed infrared (FT-IR), and 29Si MAS NMR revealed the formation of gel catalysts with a highly condensed siloxane network, which enabled us to quantitatively evaluate the hydrophobicity of the environment surrounding the catalytically active sulfo-functionality. A sulfo group in a highly hydrophobic environment exhibited excellent catalytic turnover frequency for the hydrolysis of acetate esters with a long alkyl chain, whereas not only conventional solid acid catalysts but also liquid acids showed quite low catalytic activity. Detailed kinetic studies corroborated that the adsorption of oleophilic esters at the Brønsted acid site was facilitated by the surrounding hydrophobic environment, thus significantly promoting hydrolysis under aqueous conditions. Furthermore, sulfo-functionalized siloxane gels with a highly hydrophobic surface showed excellent catalytic activity for the hydrolytic deprotection of silyl ethers.

5.
J Am Chem Soc ; 140(1): 176-184, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29224338

RESUMO

The dynamic behavior of Rh species in 1 wt% Rh/Al2O3 catalyst during the three-way catalytic reaction was examined using a micro gas chromatograph, a NOx meter, a quadrupole mass spectrometer, and time-resolved quick X-ray absorption spectroscopy (XAS) measurements at a public beamline for XAS, BL01B1 at SPring-8, operando. The combined data suggest different surface rearrangement behavior, random reduction processes, and autocatalytic oxidation processes of Rh species when the gas is switched from a reductive to an oxidative atmosphere and vice versa. This study demonstrates an implementation of a powerful operando XAS system for heterogeneous catalytic reactions and its importance for understanding the dynamic behavior of active metal species of catalysts.

6.
Angew Chem Int Ed Engl ; 57(21): 6136-6140, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29571218

RESUMO

A Pd-Au alloy efficiently catalyzed the [2+2+2] cycloaddition of substituted alkynes. Whereas monometallic Pd and Au catalysts were totally ineffective, Pd-Au alloy nanoparticle catalysts with a low Pd/Au molar ratio showed high activity to give the corresponding polysubstituted arenes in high yields. A variety of substituted alkynes participated in various modes of cycloaddition under Pd-Au alloy catalysis. The Pd-Au alloy catalysts exhibited high air tolerance and reusability.

7.
J Org Chem ; 82(2): 1231-1239, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28001406

RESUMO

A selective and atom-economical synthesis of isoindolinones is described. This novel synthetic strategy involves two catalytic reactions: the ruthenium-catalyzed regioselective alkenylation of aromatic C-H bond of aromatic amides with internal alkynes, and subsequent intramolecular cyclization of the resulting alkene with amide functionalities. The addition of only a catalytic amount of bases is required for efficient construction of the desired isoindolinones, and no byproducts are formed in the tandem catalytic reactions. Various kinds of aromatic amides and internal alkynes can be used in the present reactions, and the corresponding isoindolinones bearing a quaternary carbon at the C3 position are obtained in good to high yields.

8.
Angew Chem Int Ed Engl ; 55(1): 278-82, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26509649

RESUMO

Intermolecular [2+2+1] carbonylative cycloaddition of aldehydes with alkynes and subsequent oxidation to γ-hydroxybutenolides is achieved using a supported ruthenium catalyst. A ceria-supported ruthenium catalyst promotes the reaction efficiently, even with an ambient pressure of CO or without external CO, thus giving the corresponding γ-hydroxybutenolide derivatives in good to high yields. Moreover this catalyst can be reused with no loss of activity.

9.
J Chem Phys ; 142(16): 164507, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25933774

RESUMO

The characteristic peaks (pre-edge peaks) in the La L1-edge X-ray absorption near edge structure (XANES) of various La complex oxides were analyzed by both experimental and theoretical approaches. The pre-edge peak areas are correlated with the bond angle analysis (BAA) parameter, which we proposed as an indicator of the centrosymmetry or disorder of the local configuration of the La site. The origin of the pre-edge peak and the parameterization criteria of the BAA parameter were evaluated using theoretical calculations based on molecular orbital theory and multiple scattering theory. The theoretical calculations showed that the origin of the pre-edge peak at the La L1-edge is electric dipole transition from 2s to unoccupied states generated by p-d hybridization. Medium-scale theoretical simulations of the La L1-edge XANES spectra of thousands of virtual La aqueous complex models verified that the parameterization criteria of the BAA parameter are applicable to local configuration analysis of La.

10.
Chemphyschem ; 15(13): 2665-7, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24986789

RESUMO

Primary alcohols are selectively converted into aldehydes by using a Nb(2)O(5) photocatalyst under visible-light irradiation. A strong interaction between the alcohol and Nb(2)O(5) generates a donor level within the forbidden band of Nb(2)O(5), which provides a visible-light-harvesting ability. Over oxidation of aldehydes into carboxylic acids does not proceed under visible-light irradiation.


Assuntos
Álcoois/química , Aldeídos/síntese química , Luz , Nióbio/química , Óxidos/química , Aldeídos/química , Catálise , Estrutura Molecular , Oxirredução , Processos Fotoquímicos
11.
Inorg Chem ; 53(12): 6048-53, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24874277

RESUMO

La L1 and L3-edge X-ray absorption near-edge structure (XANES) of various La oxides were classified according to the local configuration of La. We found a correlation between both of the areas of the pre-edge peaks of the La L1-edge XANES spectra and the full width at half-maximum of white line of La L3-edge XANES spectra and the local configuration of La. Theoretical calculation of the XANES spectra and local density of states reveals the difference of La L1 and L3-edge XANES spectra of various La compounds is related to the p-d hybridization of the unoccupied band and broadening of the d band of La induced by the difference of local configuration. In addition, simplified bond angle analysis parameters defined by the angles of the La atom and the two adjacent oxygen atoms are correlated to the pre-edge peak intensity of the La L1-edge XANES spectra. These results indicate that quantitative analysis of La L1 and L3-edge XANES spectra could be an indicator of the local structure of La materials.

12.
Org Lett ; 26(15): 2902-2907, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38572805

RESUMO

We report herein that supported gold catalysts efficiently promote the borylation of stable C(sp3)-O bonds of alkyl esters. The use of a disilane as an electron source and gold nanoparticles as a single-electron transfer catalyst is the key to generating alkyl radicals via the homolysis of stable C(sp3)-O bonds, thereby enabling cross-coupling between bis(pinacolato)diboron and linear and cyclic alkyl esters to afford the diverse alkyl boronates.

13.
ACS Appl Mater Interfaces ; 16(15): 18693-18702, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572967

RESUMO

Supported particulate noble-metal catalysts are widely used in industrial catalytic reactions. However, these metal species, whether in the form of nanoparticles or highly dispersed entities, tend to aggregate during reactions, leading to a reduced activity or selectivity. Addressing the frequent necessity for the replacement of industrial catalysts remains a significant challenge. Herein, we demonstrate the feasibility of the 'regenerable catalytic system' exemplified by selective catalytic oxidation of ammonia (NH3-SCO) employing Ag/Al2O3 catalysts. Results demonstrate that our highly dispersed Ag catalyst (Ag HD) maintains >90% N2 selectivity at 80% NH3 conversion and >80% N2 selectivity at 100% NH3 conversion after enduring 5 cycles of reducible aggregation and oxidative dispersion. Moreover, it consistently upholds over 98% N2 selectivity at 100% NH3 conversion after 10 cycles of Ar treatment. During the aggregation-dispersion process, the Ag HD catalyst intentionally aggregated into Ag nanoparticles (Ag NP) after H2 reduction and exhibited remarkable regenerable capabilities, returning to the Ag HD state after calcination in the air. This structural evolution was characterized through in situ transmission electron microscopy, atomically resolved high-angle annular dark-field scanning transmission electron microscopy, and X-ray absorption spectroscopy, revealing the on-site oxidative dispersion of Ag NP. Additionally, in situ diffuse reflectance infrared Fourier transform spectroscopy provided insights into the exceptional N2 selectivity on Ag HD catalysts, elucidating the critical role of NO+ intermediates. Our findings suggest a sustainable and cost-effective solution for various industry applications.

14.
Chemphyschem ; 14(11): 2560-9, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23784806

RESUMO

Thermally stable Brønsted acid sites were generated on alumina-supported niobium oxide (Nb2O5/Al2O3) by calcination at high temperatures, such as 1123 K. The results of structural characterization by using Fourier-transform infrared (FTIR) spectroscopy, TEM, scanning transmission electron microscopy (STEM), and energy-dispersive X-ray (EDX) analysis indicated that the Nb2O5 monolayer domains were highly dispersed over alumina at low Nb2O5 loadings, such as 5 wt%, and no Brønsted acid sites were presents. The coverage of Nb2O5 monolayer domains over Al2O3 increased with increasing Nb2O5 loading and almost-full coverage was obtained at a loading of 16 wt%. A sharp increase in the number of hydroxy groups, which acted as Brønsted acid sites, was observed at this loading level. The relationship between the acidic properties and the structure of the material suggested that the bridging hydroxy groups (Nb-O(H)-Nb), which were formed at the boundaries between the domains of the Nb2O5 monolayer, acted as thermally stable Brønsted acid sites.

15.
ACS Org Inorg Au ; 3(5): 283-290, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37810415

RESUMO

To form high-density metal/oxide interfacial active sites, we developed a catalyst preparation method based on hybrid clustering. An iridium-molybdenum (Ir-Mo) hybrid clustering catalyst was prepared by using the hybrid cluster [(IrCp*)4Mo4O16] (Cp* = η5-C5Me5) as the precursor. The Ir-Mo hybrid clustering catalyst selectively reduced the nitro group in the hydrogenation of 4-nitrostyrene, whereas the coimpregnated Ir-Mo catalyst reduced both the nitro and vinyl groups nonselectively. The hybrid clustering catalyst also exhibited high selectivity, even at a high Ir loading (5 wt %), in contrast to Ir/MoO3, which exhibited high selectivity only at low Ir loadings (<0.3 wt %). In situ X-ray absorption spectroscopy analysis revealed that oxygen vacancies were formed at the Ir/MoOx interface in the presence of H2. We concluded that a high-density Ir/MoOx interface contributes to the preferential adsorption of nitro groups on vacant sites, promoting the selective hydrogenation of nitro groups.

16.
ACS Mater Au ; 3(5): 456-463, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38089094

RESUMO

We developed a method for preparing catalysts by using hybrid clustering to form a high density of metal/oxide interfacial active sites. A Rh-Mo hybrid clustering catalyst was prepared by using a hybrid cluster, [(RhCp*)4Mo4O16] (Cp* = η5-C5Me5), as the precursor. The activities of the Rh-Mo catalysts toward the NO-CO-C3H6-O2 reaction depended on the mixing method (hybrid clustering > coimpregnation ≈ pristine Rh). The hybrid clustering catalyst also exhibited high durability against thermal aging at 1273 K in air. The activity and durability were attributed to the formation of a high-density of Rh/MoOx interfacial sites. The NO reduction mechanism on the hybrid clustering catalyst was different from that on typical Rh catalysts, where the key step is the N-O cleavage of adsorbed NO. The reducibility of the Rh/MoOx interfacial sites contributed to the partial oxidation of C3H6 to form acetate species, which reacted with NO+O2 to form N2 via the adsorbed NCO species. The formation of reduced Rh on Rh4Mo4/Al2O3 was not as essential as that on typical Rh catalysts; this explained the improvement in durability.

17.
Chem Commun (Camb) ; 59(3): 286-289, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36484256

RESUMO

The low-temperature activation of methane is highly important as a reaction that can dissociate the strongest C-H bond and convert it into useful compounds. This study demonstrated that supported platinum oxide was found to activate methane near room temperature and selectively afford methanol in the presence of oxygen.

18.
Nat Commun ; 14(1): 2885, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210396

RESUMO

Efficient ethylene (C2H4) removal below room temperatures, especially near 0 °C, is of great importance to suppress that the vegetables and fruits spoil during cold-chain transportation and storage. However, no catalysts have been developed to fulfill the longer-than-2-h C2H4 removal at this low temperature effectively. Here we prepare gold-platinum (Au-Pt) nanoalloy catalysts that show robust C2H4 (of 50 ppm) removal capacity at 0 °C for 15 days (360 h). We find, by virtue of operando Fourier transformed infrared spectroscopy and online temperature-programmed desorption equipped mass spectrometry, that the Au-Pt nanoalloys favor the formation of acetate from selective C2H4 oxidation. And this on-site-formed acetate intermediate would partially cover the catalyst surface at 0 °C, thus exposing active sites to prolong the continuous and effective C2H4 removal. We also demonstrate, by heat treatment, that the performance of the used catalysts will be fully recovered for at least two times.

19.
Chemistry ; 18(14): 4250-7, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22374704

RESUMO

Chemically converted graphene (CCG) covalently linked with porphyrins has been prepared by a Suzuki coupling reaction between iodophenyl-functionalized CCG and porphyrin boronic ester. The covalently linked CCG-porphyrin composite was designed to possess a short, rigid phenylene spacer between the porphyrin and the CCG. The composite material formed stable dispersions in DMF and the structure was characterized by spectroscopic, thermal, and microscopic measurements. In steady-state photoluminescence spectra, the emission from the porphyrin linked to the CCG was quenched strongly relative to that of the porphyrin reference. Fluorescence lifetime and femtosecond transient absorption measurements of the porphyrin-linked CCG revealed a short-lived porphyrin singlet excited state (38 ps) without yielding the porphyrin radical cation, thereby substantiating the occurrence of energy transfer from the porphyrin excited state to the CCG and subsequent rapid decay of the CCG excited state to the ground state. Consistently, the photocurrent action spectrum of a photoelectrochemical device with a SnO(2) electrode coated with the porphyrin-linked CCG exhibited no photocurrent response from the porphyrin absorption. The results obtained here provide deep insight into the interaction between graphenes and π-conjugated systems in the excited and ground states.

20.
Phys Chem Chem Phys ; 14(9): 2983-90, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22281877

RESUMO

A combination of in situ time-resolved DXAFS and ICP-MS techniques reveals that the formation process of Rh nanoparticles (NPs) from rhodium trichloride trihydrate (RhCl(3)·3H(2)O) in ethylene glycol with polyvinylpyrrolidone (PVP) at elevated temperature is a first-order reaction, which indicates that uniform size Rh NPs appear consecutively and these Rh NPs do not aggregate with each other.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa