Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37925649

RESUMO

Maize (Zea mays) production systems are heavily reliant on the provision of managed inputs such as fertilizers to maximize growth and yield. Hence, the effective use of N fertilizer is crucial to minimize the associated financial and environmental costs, as well as maximize yield. However, how to effectively utilize N inputs for increased grain yields remains a substantial challenge for maize growers that requires a deeper understanding of the underlying physiological responses to N fertilizer application. We report a multi-scale investigation of five field-grown maize hybrids under low or high N supplementation regimes that includes the quantification of phenolic and prenyl-lipid compounds, cellular ultrastructural features, and gene expression traits at three developmental stages of growth. Our results reveal that maize perceives the lack of supplemented N as a stress and, when provided with additional N, will prolong vegetative growth. However, the manifestation of the stress and responses to N supplementation are highly hybrid-specific. Eight genes were differentially expressed in leaves in response to N supplementation in all tested hybrids and at all developmental stages. These genes represent potential biomarkers of N status and include two isoforms of Thiamine Thiazole Synthase involved in vitamin B1 biosynthesis. Our results uncover a detailed view of the physiological responses of maize hybrids to N supplementation in field conditions that provides insight into the interactions between management practices and the genetic diversity within maize.

2.
Plant Physiol ; 182(2): 756-775, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792149

RESUMO

Arabidopsis (Arabidopsis thaliana), like most dicotyledonous plants, expresses a multicomponent, heteromeric acetyl-CoA carboxylase (htACCase), which catalyzes the generation of the malonyl-CoA precursor of de novo fatty acid biosynthesis. This enzyme consists of four catalytic subunits: biotin carboxylase (BC), carboxyltransferase (CT)-α, CT-ß, and biotin carboxyl carrier protein (BCCP1 or BCCP2). By coexpressing combinations of components in a bacterial expression system, we demonstrate noncatalytic BADCs facilitate the assembly and activation of BCCP-BADC-BC subcomplexes catalyzing the bicarbonate-dependent hydrolysis of ATP, which is the first half-reaction catalyzed by the htACCase enzyme. Although BADC proteins do not directly impact formation of the CT-αß subcomplex, the BADC-facilitated BCCP-BADC-BC subcomplex can more readily interact with the CT-αß subcomplex to facilitate the generation of malonyl-CoA. The Arabidopsis genome encodes three BADC isoforms (BADC1, BADC2, and BADC3), and BADC2 and BADC3 (rather than BADC1), in combination with BCCP1, best support this quaternary-structural organization and catalytic activation of the htACCase enzyme. Physiological genetic studies validate these attributes as Arabidopsis double mutants singularly expressing BADC2, BADC3, or BADC1 present increasingly greater deleterious impacts on morphological and biochemical phenotypes. Specifically, plants expressing only BADC2 develop normally, plants only expressing BADC3 suffer a stunted root-growth phenotype, and plants expressing only BADC1 are embryo-lethal. The latter phenotype may also be associated with the distinct suborganelle localization of BADC1 in plastids as compared to the localization of the other two BADC homologs. These finding can inspire novel strategies to improve the biological sources of fats and oils for dietary and industrial applications.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas/fisiologia , Plastídeos/metabolismo , Domínios Proteicos/fisiologia , Acetil-CoA Carboxilase/genética , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Biotina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Catálise , Domínio Catalítico , Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Complexos Multiproteicos/metabolismo , Mutação , Ligação Proteica , Isoformas de Proteínas
3.
J Vis Exp ; (188)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36282710

RESUMO

Plastoglobule lipid droplets are a dynamic sub-compartment of plant chloroplasts and cyanobacteria. Found ubiquitously among photosynthetic species, they are believed to serve a central role in the adaptation and remodeling of the thylakoid membrane under rapidly changing environmental conditions. The capacity to isolate plastoglobules of high purity has greatly facilitated their study through proteomic, lipidomic, and other methodologies. With plastoglobules of high purity and yield, it is possible to investigate their lipid and protein composition, enzymatic activity, and protein topology, among other possible molecular characteristics. This article presents a rapid and effective protocol for the isolation of plastoglobules from chloroplasts of plant leaf tissue and presents methodological variations for the isolation of plastoglobules and related lipid droplet structures from maize leaves, the desiccated leaf tissue of the resurrection plant, Eragrostis nindensis, and the cyanobacterium, Synechocystis sp. PCC 6803. Isolation relies on the low density of these lipid-rich particles, which facilitates their purification by sucrose density flotation. This methodology will prove valuable in the study of plastoglobules from diverse species.


Assuntos
Cianobactérias , Gotículas Lipídicas , Proteômica , Cloroplastos/metabolismo , Folhas de Planta/metabolismo , Sacarose , Lipídeos/química
4.
Front Mol Biosci ; 7: 615614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511159

RESUMO

Acyl-CoA carboxylases (AcCCase) are biotin-dependent enzymes that are capable of carboxylating more than one short chain acyl-CoA substrate. We have conducted structural and kinetic analyses of such an AcCCase from Thermobifida fusca YX, which exhibits promiscuity in carboxylating acetyl-CoA, propionyl-CoA, and butyryl-CoA. The enzyme consists of two catalytic subunits (TfAcCCA and TfAcCCB) and a non-catalytic subunit, TfAcCCE, and is organized in quaternary structure with a A6B6E6 stoichiometry. Moreover, this holoenzyme structure appears to be primarily assembled from two A3 and a B6E6 subcomplexes. The role of the TfAcCCE subunit is to facilitate the assembly of the holoenzyme complex, and thereby activate catalysis. Based on prior studies of an AcCCase from Streptomyces coelicolor, we explored whether a conserved Asp residue in the TfAcCCB subunit may have a role in determining the substrate selectivity of these types of enzymes. Mutating this D427 residue resulted in alterations in the substrate specificity of the TfAcCCase, increasing proficiency for carboxylating acetyl-CoA, while decreasing carboxylation proficiency with propionyl-CoA and butyryl-CoA. Collectively these results suggest that residue D427 of AcCCB subunits is an important, but not sole determinant of the substrate specificity of AcCCase enzymes.

5.
Prog Lipid Res ; 78: 101029, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32348789

RESUMO

Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.


Assuntos
Gotículas Lipídicas/metabolismo , Filogenia , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa