Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol J ; 16(2): e2000261, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32875683

RESUMO

In manufacturing monoclonal antibodies (mAbs), it is crucial to be able to predict how process conditions and supplements affect productivity and quality attributes, especially glycosylation. Supplemental inputs, such as amino acids and trace metals in the media, are reported to affect cell metabolism and glycosylation; quantifying their effects is essential for effective process development. We aim to present and validate, through a commercially relevant cell culture process, a technique for modeling such effects efficiently. While existing models can predict mAb production or glycosylation dynamics under specific process configurations, adapting them to new processes remains challenging, because it involves modifying the model structure and often requires some mechanistic understanding. Here, a modular modeling technique for adapting an existing model for a fed-batch Chinese hamster ovary (CHO) cell culture process without structural modifications or mechanistic insight is presented. Instead, data is used, obtained from designed experimental perturbations in media supplementation, to train and validate a supplemental input effect model, which is used to "patch" the existing model. The combined model can be used for model-based process development to improve productivity and to meet product quality targets more efficiently. The methodology and analysis are generally applicable to other CHO cell lines and cell types.


Assuntos
Anticorpos Monoclonais/metabolismo , Aminoácidos/metabolismo , Animais , Células CHO , Cobre , Cricetinae , Cricetulus , Glicosilação
2.
PeerJ ; 5: e3759, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894641

RESUMO

A study was carried out to assess the effect of Stress Coat® on slime production in goldfish (Carassius auratus) and koi (Cyprinus carpio). The study also investigated histological changes that might be associated with slime producing cells, and wound healing in koi. Several formulations of Stress Coat® were investigated and the results showed that polyvinylpyrrolidone (PVP), also known as povidone, an ingredient of Stress Coat®, when used alone, showed significantly higher slime production in goldfish than salt and Stress Coat® without PVP after 25 h. The results also showed that koi treated with compounds containing PVP showed better wound healing than those not exposed to PVP. Histology results showed no difference between compounds tested with regards to density and number of slime producing cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa