Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Brain ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820112

RESUMO

Alzheimer's disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: Amyloid (A), Tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, where each of the biomarkers can be either positive (+) or negative (-). Over the past decades genome wide association studies have implicated about 90 different loci involved with the development of late onset Alzheimer's disease. Here we investigate whether genetic risk for Alzheimer's disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A-T- status, we employed Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T- status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T- status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex, and years of education. For progression from A-T- to A+T-, APOE-e4 burden showed significant effect (HR=2.88; 95% CI: 1.70-4.89; P<0.001), while polygenic risk did not (HR=1.09; 95% CI: 0.84-1.42; P=0.53). Conversely, for the transition from A+T- to A+T+, the APOE-e4 burden contribution was reduced (HR=1.62 95% CI: 1.05-2.51; P=0.031), while the polygenic risk showed an increased contribution (HR=1.73; 95% CI:1.27-2.36; P<0.001). The marginal APOE effect was driven by e4 homozygotes (HR=2.58; 95% CI: 1.05-6.35; P=0.039) as opposed to e4 heterozygotes (HR=1.74; 95% CI: 0.87-3.49; P=0.12). The genetic risk for late-onset Alzheimer's disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of transition between ATN stages, a better understanding of the molecular processes leading to Alzheimer's disease as well as opening therapeutic windows for targeted interventions.

2.
Brain ; 146(5): 1873-1887, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36348503

RESUMO

Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazard ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazard ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazard ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid ß42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.


Assuntos
Disfunção Cognitiva , Demência , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Demência/complicações , Disfunção Cognitiva/etiologia , Apolipoproteínas E/genética , Biomarcadores , Receptores de LDL
3.
Brain ; 144(12): 3727-3741, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34619763

RESUMO

Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Doença de Alzheimer/genética , COVID-19/genética , Ligação Genética/genética , Predisposição Genética para Doença/genética , Gravidade do Paciente , Adolescente , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , COVID-19/diagnóstico , COVID-19/epidemiologia , Células Cultivadas , Feminino , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/epidemiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
4.
Mov Disord ; 36(2): 424-433, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33111402

RESUMO

BACKGROUND: There are currently no treatments that stop or slow the progression of Parkinson's disease (PD). Case-control genome-wide association studies have identified variants associated with disease risk, but not progression. The objective of the current study was to identify genetic variants associated with PD progression. METHODS: We analyzed 3 large longitudinal cohorts: Tracking Parkinson's, Oxford Discovery, and the Parkinson's Progression Markers Initiative. We included clinical data for 3364 patients with 12,144 observations (mean follow-up 4.2 years). We used a new method in PD, following a similar approach in Huntington's disease, in which we combined multiple assessments using a principal components analysis to derive scores for composite, motor, and cognitive progression. These scores were analyzed in linear regression in genome-wide association studies. We also performed a targeted analysis of the 90 PD risk loci from the latest case-control meta-analysis. RESULTS: There was no overlap between variants associated with PD risk, from case-control studies, and PD age at onset versus PD progression. The APOE ε4 tagging variant, rs429358, was significantly associated with composite and cognitive progression in PD. Conditional analysis revealed several independent signals in the APOE locus for cognitive progression. No single variants were associated with motor progression. However, in gene-based analysis, ATP8B2, a phospholipid transporter related to vesicle formation, was nominally associated with motor progression (P = 5.3 × 10-6 ). CONCLUSIONS: We provide early evidence that this new method in PD improves measurement of symptom progression. We show that the APOE ε4 allele drives progressive cognitive impairment in PD. Replication of this method and results in independent cohorts are needed. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Biomarcadores , Cognição , Progressão da Doença , Estudo de Associação Genômica Ampla , Humanos , Doença de Parkinson/genética
5.
Ann Neurol ; 86(3): 427-435, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199530

RESUMO

OBJECTIVE: Alzheimer disease (AD) is the most common form of dementia and is responsible for a huge and growing health care burden in the developed and developing world. The polygenic risk score (PRS) approach has shown 75 to 84% prediction accuracy of identifying individuals with AD risk. METHODS: In this study, we tested the prediction accuracy of AD, mild cognitive impairment (MCI), and amyloid deposition risks with PRS, including and excluding APOE genotypes in a large publicly available dataset with extensive phenotypic data, the Alzheimer's Disease Neuroimaging Initiative cohort. Among MCI individuals with amyloid-positive status, we examined PRS prediction accuracy in those who converted to AD. In addition, we divided polygenic risk score by biological pathways and tested them independently for distinguishing between AD, MCI, and amyloid deposition. RESULTS: We found that AD and MCI are predicted by both APOE genotype and PRS (area under the curve [AUC] = 0.82% and 68%, respectively). Amyloid deposition is predicted by APOE only (AUC = 79%). Further progression to AD of individuals with MCI and amyloid-positive status is predicted by PRS over and above APOE (AUC = 67%). In pathway-specific PRS analyses, the protein-lipid complex has the strongest association with AD and amyloid deposition even when genes in the APOE region were removed (p = 0.0055 and p = 0.0079, respectively). INTERPRETATION: The results showed different pattern of APOE contribution in PRS risk predictions of AD/MCI and amyloid deposition. Our study suggests that APOE mostly contributes to amyloid accumulation and the PRS affects risk of further conversion to AD. ANN NEUROL 2019;86:427-435.


Assuntos
Doença de Alzheimer/genética , Apolipoproteínas E/genética , Encéfalo/metabolismo , Disfunção Cognitiva/genética , Placa Amiloide/genética , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Genéticas , Progressão da Doença , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/genética , Placa Amiloide/metabolismo , Fatores de Risco
6.
Ann Neurol ; 84(4): 485-496, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30066433

RESUMO

OBJECTIVE: The basis for clinical variation related to underlying progressive supranuclear palsy (PSP) pathology is unknown. We performed a genome-wide association study (GWAS) to identify genetic determinants of PSP phenotype. METHODS: Two independent pathological and clinically diagnosed PSP cohorts were genotyped and phenotyped to create Richardson syndrome (RS) and non-RS groups. We carried out separate logistic regression GWASs to compare RS and non-RS groups and then combined datasets to carry out a whole cohort analysis (RS = 367, non-RS = 130). We validated our findings in a third cohort by referring to data from 100 deeply phenotyped cases from a recent GWAS. We assessed the expression/coexpression patterns of our identified genes and used our data to carry out gene-based association testing. RESULTS: Our lead single nucleotide polymorphism (SNP), rs564309, showed an association signal in both cohorts, reaching genome-wide significance in our whole cohort analysis (odds ratio = 5.5, 95% confidence interval = 3.2-10.0, p = 1.7 × 10-9 ). rs564309 is an intronic variant of the tripartite motif-containing protein 11 (TRIM11) gene, a component of the ubiquitin proteasome system (UPS). In our third cohort, minor allele frequencies of surrogate SNPs in high linkage disequilibrium with rs564309 replicated our findings. Gene-based association testing confirmed an association signal at TRIM11. We found that TRIM11 is predominantly expressed neuronally, in the cerebellum and basal ganglia. INTERPRETATION: Our study suggests that the TRIM11 locus is a genetic modifier of PSP phenotype and potentially adds further evidence for the UPS having a key role in tau pathology, therefore representing a target for disease-modifying therapies. Ann Neurol 2018;84:485-496.


Assuntos
Loci Gênicos/genética , Variação Genética/genética , Fenótipo , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
7.
Brain ; 140(6): 1611-1618, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430856

RESUMO

Amyotrophic lateral sclerosis is a progressive neurodegenerative disease of motor neurons. About 25 genes have been verified as relevant to the disease process, with rare and common variation implicated. We used next generation sequencing and repeat sizing to comprehensively assay genetic variation in a panel of known amyotrophic lateral sclerosis genes in 1126 patient samples and 613 controls. About 10% of patients were predicted to carry a pathological expansion of the C9orf72 gene. We found an increased burden of rare variants in patients within the untranslated regions of known disease-causing genes, driven by SOD1, TARDBP, FUS, VCP, OPTN and UBQLN2. We found 11 patients (1%) carried more than one pathogenic variant (P = 0.001) consistent with an oligogenic basis of amyotrophic lateral sclerosis. These findings show that the genetic architecture of amyotrophic lateral sclerosis is complex and that variation in the regulatory regions of associated genes may be important in disease pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Variação Genética , Herança Multifatorial , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Reino Unido , Adulto Jovem
8.
J Neurol Neurosurg Psychiatry ; 85(5): 506-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24309268

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are progressive neurodegenerative disorders that share significant clinical, pathological and genetic overlap and are considered to represent different ends of a common disease spectrum. Mutations in Profilin1 have recently been described as a rare cause of familial ALS. The PFN1 E117G missense variant has been described in familial and sporadic cases, and also found in controls, casting doubt on its pathogenicity. Interpretation of such variants represents a significant clinical-genetics challenge. OBJECTIVE AND RESULTS: Here, we combine a screen of a new cohort of 383 ALS patients with multiple-sequence datasets to refine estimates of the ALS and FTD risk associated with PFN1 E117G. Together, our cohorts add up to 5118 ALS and FTD cases and 13 089 controls. We estimate a frequency of E117G of 0.11% in controls and 0.25% in cases. Estimated odds after population stratification is 2.44 (95% CI 1.048 to ∞, Mantel-Haenszel test p=0.036). CONCLUSIONS: Our results show an association between E117G and ALS, with a moderate effect size.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação/genética , Profilinas/genética , Idoso , Estudos de Coortes , Demência Frontotemporal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Reino Unido
9.
Artigo em Inglês | MEDLINE | ID: mdl-38853375

RESUMO

BACKGROUND: Clinically assisted nutrition and hydration via percutaneous endoscopic gastrostomy (PEG) is a therapeutic option to ameliorate the difficulties associated with enhanced catabolism, weight loss, and dysphagia in Huntington's disease (HD). OBJECTIVES: The objective is to provide insights into demographics, staging (Shoulson-Fahn), complications, weight trajectories, and survival rates in people with HD (pwHD) who underwent PEG. METHODS: This retrospective study included 705 consecutive pwHD who attended our HD clinic between July 2006 and March 2024, of whom 52 underwent PEG. A control group (n = 52), comprising pwHD without PEG, were closely matched for sex, stage, age, CAG length, and disease burden score at PEG. The study was registered as a service evaluation at the National Hospital for Neurology and Neurosurgery. RESULTS: PEG prevalence was 15.0% (n = 52/347) among manifest pwHD: 4.8% (n = 3/62) for Stage 3; 33.3% (n = 16/48) for stage 4; and 44.1% (n = 30/68) for stage 5. Commonest indications were dysphagia, weight loss, and inadequate oral intake. Complications included chest infection, tube dislodgement, and peristomal and skin infections. Modeling of weight trajectories after PEG found no difference between PEG and non-PEG groups. Mortality rate was 34.6% (n = 18/52) in the PEG and 36.5% (n = 19/52) in the non-PEG groups (P = 0.84). Treatment duration (until study endpoint or death) was 3.48 years (interquartile range = 1.71-6.02; range = 0.23-18.8), with 65.4% (n = 34/52) alive at the study endpoint. CONCLUSION: PEG in pwHD at-risk for weight loss may help slow weight loss. Prospective studies are required to strengthen PEG decision-making in pwHD. PEG survival was much longer than other dementias, highlighting the need to consider PEG independently in pwHD.

10.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631765

RESUMO

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Assuntos
Doença de Pick , Tauopatias , Feminino , Humanos , Masculino , Estudos de Associação Genética , Haplótipos , Doença de Pick/genética , Proteínas tau/genética
11.
NPJ Parkinsons Dis ; 10(1): 113, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849413

RESUMO

There are 90 independent genome-wide significant genetic risk variants for Parkinson's disease (PD) but currently only five nominated loci for PD progression. The biology of PD progression is likely to be of central importance in defining mechanisms that can be used to develop new treatments. We studied 6766 PD patients, over 15,340 visits with a mean follow-up of between 4.2 and 15.7 years and carried out genome-wide survival studies for time to a motor progression endpoint, defined by reaching Hoehn and Yahr stage 3 or greater, and death (mortality). There was a robust effect of the APOE ε4 allele on mortality in PD. We also identified a locus within the TBXAS1 gene encoding thromboxane A synthase 1 associated with mortality in PD. We also report 4 independent loci associated with motor progression in or near MORN1, ASNS, PDE5A, and XPO1. Only the non-Gaucher disease causing GBA1 PD risk variant E326K, of the known PD risk variants, was associated with mortality in PD. Further work is needed to understand the links between these genomic variants and the underlying disease biology. However, these may represent new candidates for disease modification in PD.

12.
Mov Disord ; 28(2): 232-236, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23225227

RESUMO

BACKGROUND: Heterozygous loss-of-function mutations in the acid beta-glucocerebrosidase (GBA1) gene, responsible for the recessive lysosomal storage disorder, Gaucher's disease (GD), are the strongest known risk factor for Parkinson's disease (PD). Our aim was to assess the contribution of GBA1 mutations in a series of early-onset PD. METHODS: One hundred and eighty-five PD patients (with an onset age of ≤50) and 283 age-matched controls were screened for GBA1 mutations by Sanger sequencing. RESULTS: We show that the frequency of GBA1 mutations is much higher in this patient series than in typical late-onset patient cohorts. Furthermore, our results reveal that the most prevalent PD-associated GBA1 mutation is E326K, a variant that does not, when homozygous, cause GD. CONCLUSIONS: Our results confirm recent reports that the mutation, E326K, predisposes to PD and suggest that, in addition to reduced GBA1 activity, other molecular mechanisms may contribute to the development of the disease.


Assuntos
Glucosilceramidase/genética , Doença de Parkinson/genética , Adulto , Idade de Início , DNA/genética , Bases de Dados Genéticas , Éxons/genética , Feminino , Doença de Gaucher/epidemiologia , Doença de Gaucher/genética , Frequência do Gene , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Leucócitos/enzimologia , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação/genética , Fases de Leitura Aberta/genética , Doença de Parkinson/epidemiologia , Proteínas Serina-Treonina Quinases/genética , Análise de Sequência de DNA , Ubiquitina-Proteína Ligases/genética , Reino Unido/epidemiologia , População Branca , Adulto Jovem
13.
Gene ; 851: 147020, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36343703

RESUMO

PURPOSE: To assess, if the SARS-CoV-2 mutate in a similar pattern globally or has a specific pattern in any given population. RESULTS: We report, the insertion of TTT at 11085, which adds an extra amino acid, F to the NSP6 at amino acid position 38. The highest occurrence of TTT insertion at 11,085 position was found in UK derived samples (65.97%). The second and third highest occurrence of the mutation were found in Australia (8.3%) and USA (4.16%) derived samples, respectively. Another important discovery of this study is the C27945T mutation, which translates into the termination of ORF-8 after 17 amino acids, reveals that the SARS-CoV-2 can replicate without the intact ORF-8 protein. We found that the 97% of C27945T mutation of global occurrence, occurred in Europe and the USA derived samples. CONCLUSIONS: Two of the reported mutations (11085TTT insertion and C27945T nonsense), which seemed to reduce Type I interferon response are linked to specific geographical locations of the host and implicate region-specific mutations in the virus. The findings of this study signify that SARS-CoV-2 has the potential to adapt differently to different populations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/genética , Pandemias , Genoma Viral , Mutação , Filogenia , Aminoácidos/genética
14.
NPJ Parkinsons Dis ; 9(1): 70, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117178

RESUMO

Genetic correlation ([Formula: see text]) between traits can offer valuable insight into underlying shared biological mechanisms. Neurodegenerative diseases overlap neuropathologically and often manifest comorbid neuropsychiatric symptoms. However, global [Formula: see text] analyses show minimal [Formula: see text] among neurodegenerative and neuropsychiatric diseases. Importantly, local [Formula: see text] s can exist in the absence of global relationships. To investigate this possibility, we applied LAVA, a tool for local [Formula: see text] analysis, to genome-wide association studies of 3 neurodegenerative diseases (Alzheimer's disease, Lewy body dementia and Parkinson's disease) and 3 neuropsychiatric disorders (bipolar disorder, major depressive disorder and schizophrenia). We identified several local [Formula: see text] s missed in global analyses, including between (i) all 3 neurodegenerative diseases and schizophrenia and (ii) Alzheimer's and Parkinson's disease. For those local [Formula: see text] s identified in genomic regions containing disease-implicated genes, such as SNCA, CLU and APOE, incorporation of expression quantitative trait loci identified genes that may drive genetic overlaps between diseases. Collectively, we demonstrate that complex genetic relationships exist among neurodegenerative and neuropsychiatric diseases, highlighting putative pleiotropic genomic regions and genes. These findings imply sharing of pathogenic processes and the potential existence of common therapeutic targets.

15.
Neurol Genet ; 9(5): e200092, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37560120

RESUMO

Background and Objectives: The genetic basis of Parkinson disease (PD) motor progression is largely unknown. Previous studies of the genetics of PD progression have included small cohorts and shown a limited overlap with genetic PD risk factors from case-control studies. Here, we have studied genomic variation associated with PD motor severity and early-stage progression in large longitudinal cohorts to help to define the biology of PD progression and potential new drug targets. Methods: We performed a GWAS meta-analysis of early PD motor severity and progression up to 3 years from study entry. We used linear mixed-effect models with additive effects, corrected for age at diagnosis, sex, and the first 5 genetic principal components to assess variability in axial, limb, and total Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III scores. Results: We included 3,572 unrelated European ancestry patients with PD from 5 observational cohorts and 1 drug trial. The average AAO was 62.6 years (SD = 9.83), and 63% of participants were male. We found an average increase in the total MDS-UPDRS III score of 2.3 points/year. We identified an association between PD axial motor progression and variation at the GJA5 locus at 1q12 (ß = -0.25, SE = 0.04, p = 3.4e-10). Exploration of the regulation of gene expression in the region (cis-expression quantitative trait loci [eQTL] analysis) showed that the lead variant was associated with expression of ACP6, a lysophosphatidic acid phosphatase that regulates mitochondrial lipid biosynthesis (cis-eQTL p-values in blood and brain RNA expression data sets: <10-14 in eQTLGen and 10-7 in PsychEncode). Discussion: Our study highlights the potential role of mitochondrial lipid homeostasis in the progression of PD, which may be important in establishing new drug targets that might modify disease progression.

16.
medRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425912

RESUMO

Importance: Forty percent of Parkinson's disease patients develop levodopa-induced-dyskinesia (LiD) within 4 years of starting levodopa. The genetic basis of LiD remains poorly understood, and there have been few well powered studies. Objective: To discover common genetic variants in the PD population that increase the probability of developing LiD. Design setting and Participants: We performed survival analyses to study the development of LiD in 5 separate longitudinal cohorts. We performed a meta-analysis to combine the results of genetic association from each study based on a fixed effects model weighting the effect sizes by the inverse of their standard error. The selection criteria was specific to each cohort. We studied individuals that were genotyped from each cohort and that passed our analysis specific inclusion criteria. Main Outcomes and Measures: We measured the time for PD patients on levodopa treatment to develop LiD as defined by reaching a score higher or equal than 2 from the MDS-UPDRS part IV, item 1, which is equivalent to a range of 26%-50% of the waking time with dyskinesia. We carried out a genome-wide analysis of the hazard ratio and the association of genome-wide SNPs with the probability of developing LiD using cox proportional hazard models (CPH). Results: This study included 2,784 PD patients of European ancestry, of whom 14.6% developed LiD. Consistent with previous studies, we found female gender (HR = 1.35, SE = 0.11, P = 0.007) and younger age at onset (HR = 1.8, SE = 0.14, P = 2 × 10 -5 ) to increase the probability of developing LiD. We identified three loci significantly associated with time-to-LiD onset. rs72673189 on chromosome 1 (HR = 2.77, SE = 0.18, P = 1.53 × 10 -8 ) located in the LRP8 locus, rs189093213 on chromosome 4 (HR = 3.06,, SE = 0.19, P = 2.81 × 10 -9 ) in the non-coding RNA LINC02353 locus, and rs180924818 on chromosome 16 (HR = 3.13, SE = 0.20, P = 6.27 × 10 -9 ) in the XYLT1 locus. Subsequent colocalization analyses on chromosome 1 identified DNAJB4 as a candidate gene associated with LiD through a change in gene expression. We computed a PRS based on our GWAS meta-analysis and found high accuracy to stratify between PD-LID and PD (AUC 83.9). We also performed a stepwise regression analysis for baseline features selection associated with LiD status. We found baseline anxiety status to be significantly associated with LiD (OR = 1.14, SE = 0.03, P = 7.4 × 10 -5 ). Finally, we performed a candidate variant analysis and found that genetic variability in ANKK1 ( rs1800497 , Beta = 0.24, SE = 0.09, P = 8.89 × 10 -3 ) and BDNF ( rs6265 , Beta = 0.19, SE = 0.10, P = 4.95 × 10 -2 ) loci were significantly associated with time to LiD in our large meta-analysis. Conclusion: In this association study, we have found three novel genetic variants associated with LiD, as well as confirming reports that variability in ANKK1 and BDNF loci were significantly associated with LiD probability. A PRS nominated from our time-to-LiD meta-analysis significantly differentiated between PD-LiD and PD. In addition, we have found female gender, young PD onset and anxiety to be significantly associated with LiD.

17.
medRxiv ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461547

RESUMO

Repeat expansion disorders (REDs) are a devastating group of predominantly neurological diseases. Together they are common, affecting 1 in 3,000 people worldwide with population-specific differences. However, prevalence estimates of REDs are hampered by heterogeneous clinical presentation, variable geographic distributions, and technological limitations leading to under-ascertainment. Here, leveraging whole genome sequencing data from 82,176 individuals from different populations we found an overall carrier frequency of REDs of 1 in 340 individuals. Modelling disease prevalence using genetic data, age at onset and survival, we show that REDs are up to 3-fold more prevalent than currently reported figures. While some REDs are population-specific, e.g. Huntington's disease type 2, most REDs are represented in all broad genetic ancestries, including Africans and Asians, challenging the notion that some REDs are found only in European populations. These results have worldwide implications for local and global health communities in the diagnosis and management of REDs both at local and global levels.

18.
PLoS One ; 18(4): e0281440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37115753

RESUMO

INTRODUCTION: Both late-onset Alzheimer's disease (AD) and ageing have a strong genetic component. In each case, many associated variants have been discovered, but how much missing heritability remains to be discovered is debated. Variability in the estimation of SNP-based heritability could explain the differences in reported heritability. METHODS: We compute heritability in five large independent cohorts (N = 7,396, 1,566, 803, 12,528 and 3,963) to determine whether a consensus for the AD heritability estimate can be reached. These cohorts vary by sample size, age of cases and controls and phenotype definition. We compute heritability a) for all SNPs, b) excluding APOE region, c) excluding both APOE and genome-wide association study hit regions, and d) SNPs overlapping a microglia gene-set. RESULTS: SNP-based heritability of late onset Alzheimer's disease is between 38 and 66% when age and genetic disease architecture are correctly accounted for. The heritability estimates decrease by 12% [SD = 8%] on average when the APOE region is excluded and an additional 1% [SD = 3%] when genome-wide significant regions were removed. A microglia gene-set explains 69-84% of our estimates of SNP-based heritability using only 3% of total SNPs in all cohorts. CONCLUSION: The heritability of neurodegenerative disorders cannot be represented as a single number, because it is dependent on the ages of cases and controls. Genome-wide association studies pick up a large proportion of total AD heritability when age and genetic architecture are correctly accounted for. Around 13% of SNP-based heritability can be explained by known genetic loci and the remaining heritability likely resides around microglial related genes.


Assuntos
Doença de Alzheimer , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença , Doença de Alzheimer/genética , Loci Gênicos , Polimorfismo de Nucleotídeo Único , Apolipoproteínas E/genética
19.
NPJ Parkinsons Dis ; 9(1): 128, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652906

RESUMO

The genetic basis of levodopa-induced-dyskinesia (LiD) is poorly understood, and there have been few well-powered genome-wide studies. We performed a genome-wide survival meta-analyses to study the effect of genetic variation on the development of LiD in five separate longitudinal cohorts, and meta-analysed the results. We included 2784 PD patients, of whom 14.6% developed LiD. We found female sex (HR = 1.35, SE = 0.11, P = 0.007) and younger age at onset (HR = 1.8, SE = 0.14, P = 2 × 10-5) increased the probability of developing LiD. We identified three genetic loci significantly associated with time-to-LiD onset. rs72673189 on chromosome 1 (HR = 2.77, SE = 0.18, P = 1.53 × 10-8) located at the LRP8 locus, rs189093213 on chromosome 4 (HR = 3.06, SE = 0.19, P = 2.81 × 10-9) in the non-coding RNA LINC02353 locus, and rs180924818 on chromosome 16 (HR = 3.13, SE = 0.20, P = 6.27 × 10-9) in the XYLT1 locus. Based on a functional annotation analysis on chromosome 1, we determined that changes in DNAJB4 gene expression, close to LRP8, are an additional potential cause of increased susceptibility to LiD. Baseline anxiety status was significantly associated with LiD (OR = 1.14, SE = 0.03, P = 7.4 × 10-5). Finally, we performed a candidate variant analysis of previously reported loci, and found that genetic variability in ANKK1 (rs1800497, HR = 1.27, SE = 0.09, P = 8.89 × 10-3) and BDNF (rs6265, HR = 1.21, SE = 0.10, P = 4.95 × 10-2) loci were significantly associated with time to LiD in our large meta-analysis.

20.
medRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37987016

RESUMO

Up to 80% of Parkinson's disease patients develop dementia, but time to dementia varies widely from motor symptom onset. Dementia with Lewy bodies presents with clinical features similar to Parkinson's disease dementia, but cognitive impairment precedes or coincides with motor onset. It remains controversial whether dementia with Lewy bodies and Parkinson's disease dementia are distinct conditions or represent part of a disease spectrum. The biological mechanisms underlying disease heterogeneity, in particular the development of dementia, remain poorly understood, but will likely be key to understanding disease pathways and ultimately therapy development. Previous genome-wide association studies in Parkinson's disease and dementia with Lewy bodies/Parkinson's disease dementia have identified risk loci differentiating patients from controls. We collated data for 7,804 patients of European ancestry from Tracking Parkinson's (PRoBaND), The Oxford Discovery Cohort, and AMP-PD. We conducted a discrete phenotype genome-wide association studies comparing Lewy body diseases with and without dementia to decode disease heterogeneity by investigating the genetic drivers of dementia in Lewy body diseases. We found that risk alleles rs429358 tagging APOEe4 and rs7668531 near the MMRN1 and SNCA-AS1 genes, increase the odds of developing dementia and that an intronic variant rs17442721 tagging LRRK2 G2019S, on chromosome 12 is protective against dementia. These results should be validated in autopsy confirmed cases in future studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa