Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Ecol Lett ; 26(7): 1132-1144, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37125464

RESUMO

Disturbance and environmental change may cause communities to converge on a steady state, diverge towards multiple alternative states or remain in long-term transience. Yet, empirical investigations of successional trajectories are rare, especially in systems experiencing multiple concurrent anthropogenic drivers of change. We examined succession in old field grassland communities subjected to disturbance and nitrogen fertilization using data from a long-term (22-year) experiment. Regardless of initial disturbance, after a decade communities converged on steady states largely determined by resource availability, where species turnover declined as communities approached dynamic equilibria. Species favoured by the disturbance were those that eventually came to dominate the highly fertilized plots. Furthermore, disturbance made successional pathways more direct revealing an important interaction effect between nutrients and disturbance as drivers of community change. Our results underscore the dynamical nature of grassland and old field succession, demonstrating how community properties such as ß diversity change through transient and equilibrium states.


Assuntos
Pradaria , Nutrientes , Nitrogênio , Ecossistema
2.
Am Nat ; 202(4): 399-412, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792915

RESUMO

AbstractPopulation spatial synchrony-the tendency for temporal population fluctuations to be correlated across locations-is common and important to metapopulation stability and persistence. One common cause of spatial synchrony, termed the Moran effect, occurs when populations respond to environmental fluctuations, such as weather, that are correlated over space. Although the degree of spatial synchrony in environmental fluctuations can differ between seasons and different population processes occur in different seasons, the impact on population spatial synchrony is uncertain because prior work has largely assumed that the spatial synchrony of environmental fluctuations and their effect on populations are consistent over annual sampling intervals. We used theoretical models to examine how seasonality in population processes and the spatial synchrony of environmental drivers affect population spatial synchrony. We found that population spatial synchrony can depend not only on the spatial synchrony of environmental drivers but also on the degree to which environmental fluctuations are correlated across seasons, locally, and across space. Moreover, measurements of synchrony from "snapshot" population censuses may not accurately reflect synchrony during other parts of the year. Together, these results show that neglecting seasonality in environmental conditions and population processes is consequential for understanding population spatial synchrony and its driving mechanisms.


Assuntos
Modelos Teóricos , Tempo (Meteorologia) , Dinâmica Populacional , Estações do Ano , Ecossistema
3.
Ecol Lett ; 25(4): 740-753, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34965013

RESUMO

Dispersal and dormancy are two common strategies allowing for species persistence and the maintenance of biodiversity in variable environments. However, theory and empirical tests of spatial diversity patterns tend to examine either mechanism in isolation. Here, we developed a stochastic, spatially explicit metacommunity model incorporating seed banks with varying germination and survival rates. We found that dormancy and dispersal had interactive, nonlinear effects on the maintenance and distribution of metacommunity diversity. Seed banks promoted local diversity when seed survival was high and maintained regional diversity through interactions with dispersal. The benefits of seed banks for regional diversity were largest when dispersal was high or intermediate, depending on whether local competition was equal or stabilising. Our study shows that classic predictions for how dispersal affects metacommunity diversity can be strongly influenced by dormancy. Together, these results emphasise the need to consider both temporal and spatial processes when predicting multi-scale patterns of diversity.


Assuntos
Biodiversidade , Banco de Sementes , Sementes
4.
Ecol Lett ; 25(7): 1618-1628, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35633300

RESUMO

Natural systems contain more complexity than is accounted for in models of modern coexistence theory. Coexistence modelling often disregards variation arising from stochasticity in biological processes, heterogeneity among individuals and plasticity in trait values. However, these unaccounted-for sources of uncertainty are likely to be ecologically important and have the potential to impact estimates of coexistence. We applied a Bayesian modelling framework to data from an annual plant community in Western Australia to propagate uncertainty in coexistence outcomes using the invasion criterion and ratio of niche to fitness differences. We found accounting for this uncertainty altered predictions of coexistence versus competitive exclusion for 3 out of 14 species pairs and yielded a probability of priority effects for an additional species pair. The propagation of uncertainty arising from sources of biological complexity improves our ability to predict coexistence more accurately in natural systems.


Assuntos
Ecossistema , Modelos Biológicos , Teorema de Bayes , Demografia , Humanos , Plantas , Incerteza
5.
Ecol Lett ; 25(8): 1813-1826, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763598

RESUMO

Global change is altering patterns of community assembly, with net outcomes dependent on species' responses to the abiotic environment, both directly and mediated through biotic interactions. Here, we assess alpine plant community responses in a 15-year factorial nitrogen addition, warming and snow manipulation experiment. We used a dynamic competition model to estimate the density-dependent and -independent processes underlying changes in species-group abundances over time. Density-dependent shifts in competitive interactions drove long-term changes in abundance of species-groups under global change while counteracting environmental drivers limited the growth response of the dominant species through density-independent mechanisms. Furthermore, competitive interactions shifted with the environment, primarily with nitrogen and drove non-linear abundance responses across environmental gradients. Our results highlight that global change can either reshuffle species hierarchies or further favour already-dominant species; predicting which outcome will occur requires incorporating both density-dependent and -independent mechanisms and how they interact across multiple global change factors.


Assuntos
Nitrogênio , Plantas , Ecossistema
6.
Ecol Lett ; 25(5): 1263-1276, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35106910

RESUMO

Modelling species interactions in diverse communities traditionally requires a prohibitively large number of species-interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity-inducing priors on non-linear species abundance models to determine which species interactions should be retained and which can be represented as an average heterospecific interaction term, reducing the number of model parameters. We evaluated model performance using simulated communities, computing out-of-sample predictive accuracy and parameter recovery across different input sample sizes. We applied our method to a diverse empirical community, allowing us to disentangle the direct role of environmental gradients on species' intrinsic growth rates from indirect effects via competitive interactions. We also identified a few neighbouring species from the diverse community that had non-generic interactions with our focal species. This sparse modelling approach facilitates exploration of species interactions in diverse communities while maintaining a manageable number of parameters.


Assuntos
Teorema de Bayes , Ecologia
7.
Ecol Appl ; 32(7): e2649, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35560687

RESUMO

Restoration ecology commonly seeks to re-establish species of interest in degraded habitats. Despite a rich understanding of how succession influences re-establishment, there are several outstanding questions that remain unaddressed: are short-term abundances sufficient to determine long-term re-establishment success, and what factors contribute to unpredictable restorations outcomes? In other words, when restoration fails, is it because the restored habitat is substandard, because of strong competition with invasive species, or alternatively due to changing environmental conditions that would equally impact established populations? Here, we re-purpose tools developed from modern coexistence theory to address these questions, and apply them to an effort to restore the endangered Contra Costa goldfields (Lasthenia conjugens) in constructed ("restored") California vernal pools. Using 16 years of data, we construct a population model of L. conjugens, a species of conservation concern due primarily to habitat loss and invasion of exotic grasses. We show that initial, short-term appearances of restoration success from population abundances is misleading, as year-to-year fluctuations cause long-term population growth rates to fall below zero. The failure of constructed pools is driven by lower maximum growth rates compared with reference ("natural") pools, coupled with a stronger negative sensitivity to annual fluctuations in abiotic conditions that yield decreased maximum growth rates. Nonetheless, our modeling shows that fluctuations in competition (mainly with exotic grasses) benefit L. conjugens through periods of competitive release, especially in constructed pools of intermediate pool depth. We therefore show how reductions in invasives and seed addition in pools of particular depths could change the outcome of restoration for L. conjugens. By applying a largely theoretical framework to the urgent goal of ecological restoration, our study provides a blueprint for predicting restoration success, and identifies future actions to reverse species loss.


Assuntos
Asteraceae , Ecossistema , Espécies Introduzidas , Plantas , Poaceae , Estações do Ano
9.
Adm Policy Ment Health ; 49(2): 267-282, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34505211

RESUMO

Although college campuses are diversifying rapidly, students of color remain an underserved and understudied group. Online screening and subsequent allocation to treatment represents a pathway to enhancing equity in college student mental health. The purpose of the current study was to evaluate racial/ethnic differences in mental health problems and treatment enrollment within the context of a largescale screening and treatment research initiative on a diverse college campus. The sample was comprised of n = 2090 college students who completed an online mental health screening survey and were offered either free online or face-to-face treatment based on symptom severity as a part of a research study. A series of ordinal, binomial and multinomial logistic regression models were specified to examine racial/ethnic differences in mental health problems, prior treatment receipt, and enrollment in online and face-to-face treatment through the campus-wide research initiative. Racial/ethnic differences in depression, anxiety and suicidality endorsed in the screening survey were identified. Students of color were less likely to have received prior mental health treatment compared to non-Hispanic white students, but were equally likely to enroll in and initiate online and face-to-face treatment offered through the current research initiative. Rates of enrollment in online therapy were comparable to prior studies. Online screening and treatment may be an effective avenue to reaching underserved students of color with mental health needs on college campuses. Digital mental health tools hold significant promise for bridging gaps in care, but efforts to improve uptake and engagement are needed.


Assuntos
Saúde Mental , Estudantes , Etnicidade , Humanos , Grupos Raciais , Universidades
10.
Ecol Lett ; 24(7): 1474-1486, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33945663

RESUMO

Ecological stability refers to a family of concepts used to describe how systems of interacting species vary through time and respond to disturbances. Because observed ecological stability depends on sampling scales and environmental context, it is notoriously difficult to compare measurements across sites and systems. Here, we apply stochastic dynamical systems theory to derive general statistical scaling relationships across time, space, and ecological level of organisation for three fundamental stability aspects: resilience, resistance, and invariance. These relationships can be calibrated using random or representative samples measured at individual scales, and projected to predict average stability at other scales across a wide range of contexts. Moreover deviations between observed vs. extrapolated scaling relationships can reveal information about unobserved heterogeneity across time, space, or species. We anticipate that these methods will be useful for cross-study synthesis of stability data, extrapolating measurements to unobserved scales, and identifying underlying causes and consequences of heterogeneity.


Assuntos
Ecossistema , Projetos de Pesquisa
11.
Ecol Lett ; 23(6): 939-950, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32255558

RESUMO

Coexistence and food web theory are two cornerstones of the long-standing effort to understand how species coexist. Although competition and predation are known to act simultaneously in communities, theory and empirical study of these processes continue to be developed largely independently. Here, we integrate modern coexistence theory and food web theory to simultaneously quantify the relative importance of predation and environmental fluctuations for species coexistence. We first examine coexistence in a theoretical, multitrophic model, adding complexity to the food web using machine learning approaches. We then apply our framework to a stochastic model of the rocky intertidal food web, partitioning empirical coexistence dynamics. We find the main effects of both environmental fluctuations and variation in predator abundances contribute substantially to species coexistence. Unexpectedly, their interaction tends to destabilise coexistence, leading to new insights about the role of bottom-up vs. top-down forces in both theory and the rocky intertidal ecosystem.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Cadeia Alimentar , Dinâmica Populacional , Comportamento Predatório
12.
Ecol Lett ; 22(10): 1658-1667, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31298471

RESUMO

Environmental variability can structure species coexistence by enhancing niche partitioning. Modern coexistence theory highlights two fluctuation-dependent temporal coexistence mechanisms -the storage effect and relative nonlinearity - but empirical tests are rare. Here, we experimentally test if environmental fluctuations enhance coexistence in a California annual grassland. We manipulate rainfall timing and relative densities of the grass Avena barbata and forb Erodium botrys, parameterise a demographic model, and partition coexistence mechanisms. Rainfall variability was integral to grass-forb coexistence. Variability enhanced growth rates of both species, and early-season drought was essential for Erodium persistence. While theoretical developments have focused on the storage effect, it was not critical for coexistence. In comparison, relative nonlinearity strongly stabilised coexistence, where Erodium experienced disproportionately high growth under early-season drought due to competitive release from Avena. Our results underscore the importance of environmental variability and suggest that relative nonlinearity is a critical if underappreciated coexistence mechanism.


Assuntos
Pradaria , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Chuva , California , Secas
13.
Ecol Lett ; 22(7): 1115-1125, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31090159

RESUMO

The spread of vector-borne pathogens depends on a complex set of interactions among pathogen, vector, and host. In single-host systems, pathogens can induce changes in vector preferences for infected vs. healthy hosts. Yet it is unclear if pathogens also induce changes in vector preference among host species, and how changes in vector behaviour alter the ecological dynamics of disease spread. Here, we couple multi-host preference experiments with a novel model of vector preference general to both single and multi-host communities. We show that viruliferous aphids exhibit strong preferences for healthy and long-lived hosts. Coupling experimental results with modelling to account for preference leads to a strong decrease in overall pathogen spread through multi-host communities due to non-random sorting of viruliferous vectors between preferred and non-preferred host species. Our results demonstrate the importance of the interplay between vector behaviour and host diversity as a key mechanism in the spread of vectored-diseases.


Assuntos
Afídeos , Insetos Vetores , Animais , Vetores de Doenças , Ecologia , Doenças das Plantas
14.
Ecology ; 97(9): 2436-2446, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27859071

RESUMO

Four metacommunity paradigms-usually called neutral, species sorting, mass effects, and patch dynamics, respectively-are widely used for empirical and theoretical studies of spatial community dynamics. The paradigm framework highlights key ecological mechanisms operating in metacommunities, such as dispersal limitation, competition-colonization tradeoffs, or species equivalencies. However, differences in coexistence mechanisms between the paradigms and in situations with combined influences of multiple paradigms are not well understood. Here, we create a common model for competitive metacommunities, with unique parameterizations for each metacommunity paradigm and for scenarios with multiple paradigms operating simultaneously. We derive analytical expressions for the strength of Chesson's spatial coexistence mechanisms and quantify these for each paradigm via simulation. For our model, fitness-density covariance, a concentration effect measuring the importance of intraspecific aggregation of individuals, is the dominant coexistence mechanism in all three niche-based metacommunity paradigms. Increased dispersal between patches erodes intraspecific aggregation, leading to lower coexistence strength in the mass effects paradigm compared to species sorting. Our analysis demonstrates the potential importance of aggregation of individuals (fitness-density covariance) over co-variation in abiotic environments and competition between species (the storage effect), as fitness-density covariance can be stronger than the storage effect and is the sole stabilizing mechanism in the patch dynamics paradigm. As expected, stable coexistence does not occur in the neutral paradigm, which requires species to be equal and emphasizes the role of stochasticity. We show that stochasticity also plays an important role in niche-structured metacommunities by altering coexistence strength. We conclude that Chesson's spatial coexistence mechanisms provide a flexible framework for comparing metacommunities of varying complexity.


Assuntos
Ecologia/métodos , Ecossistema , Modelos Biológicos , Modelos Teóricos , Dinâmica Populacional
15.
Ecol Lett ; 17(2): 211-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24304872

RESUMO

Horses (family Equidae) are a classic example of adaptive radiation, exhibiting a nearly 60-fold increase in maximum body mass and a peak taxonomic diversity of nearly 100 species across four continents. Such patterns are commonly attributed to niche competition, in which increased taxonomic diversity drives increased size disparity. However, neutral processes, such as macroevolutionary 'diffusion', can produce similar increases in disparity without increased diversity. Using a comprehensive database of Equidae species size estimates and a common mathematical framework, we measure the contributions of diversity-driven and diffusion-driven mechanisms for increased disparity during the Equidae radiation. We find that more than 90% of changes in size disparity are attributable to diffusion alone. These results clarify the role of species competition in body size evolution, indicate that morphological disparity and species diversity may be only weakly coupled in general, and demonstrate that large species may evolve from neutral macroevolutionary diffusion processes alone.


Assuntos
Evolução Biológica , Peso Corporal/genética , Cavalos/genética , Modelos Genéticos , Animais
16.
Pediatr Res ; 73(2): 147-54, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23154756

RESUMO

BACKGROUND: Fetal intrauterine growth restriction (IUGR) results in increased placental resistance to blood flow, fetal hypertension, and increased pulsatility stresses shown to lead to vascular remodeling. We tested our hypothesis that IUGR causes decreased compliance in the carotid and umbilical arteries due to altered extracellular matrix (ECM) composition and structure. METHODS: A sheep model of placental insufficiency-induced IUGR (PI-IUGR) was created by exposure of the pregnant ewe to elevated ambient temperatures. Umbilical and carotid arteries from near-term fetuses were tested with pressure-diameter measurements to compare passive compliance in control and PI-IUGR tissues. ECM composition was measured via biochemical assay, and the organization was determined by using histology and second-harmonic generation imaging. RESULTS: We found that PI-IUGR increased arterial stiffness with increased collagen engagement, or transition stretch. PI-IUGR carotid arteries exhibited increased collagen and elastin quantity, and PI-IUGR umbilical arteries exhibited increased sulfated glycosaminoglycans. Histomorphology showed altered collagen-to-elastin ratios with altered cellular proliferation. Increased stiffness indicates altered collagen-to-elastin ratios with less elastin contribution leading to increased collagen engagement. CONCLUSION: Because vessel stiffness is a significant predictor in the development of hypertension, disrupted ECM deposition in IUGR provides a potential link between IUGR and adult hypertension.


Assuntos
Artérias Carótidas/fisiopatologia , Matriz Extracelular/patologia , Retardo do Crescimento Fetal/fisiopatologia , Artérias Umbilicais/fisiopatologia , Rigidez Vascular , Animais , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Proliferação de Células , Colágeno/metabolismo , Complacência (Medida de Distensibilidade) , Modelos Animais de Doenças , Elastina/metabolismo , Matriz Extracelular/metabolismo , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Idade Gestacional , Glicosaminoglicanos/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Gravidez , Ovinos , Artérias Umbilicais/metabolismo , Artérias Umbilicais/patologia
17.
Ecology ; 104(11): e4162, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37672010

RESUMO

While community synchrony is a key framework for predicting ecological constancy, the interplay between community synchrony and ecological invasions remains unclear. Yet the degree of synchrony in a resident community may influence its resistance and resilience to the introduction of an invasive species. Here we used a generalizable mathematical framework, constructed with a modified Lotka-Volterra competition model, to first simulate resident communities across a range of competitive strengths and species' responses to environmental fluctuations, which yielded communities that ranged from strongly synchronous to compensatory. We then invaded these communities at different timesteps with invaders of varying demographic traits, after which we quantified the resident community's susceptibility to initial invasion attempts (resistance) and the degree to which community synchrony was altered after invasion (resiliency of synchrony). We found that synchronous communities were not only more resistant but also more resilient to invasion than compensatory communities, likely due to stronger competition between resident species and thus lower cumulative abundances in compensatory communities, providing greater opportunities for invasion. The growth rate of the invader was most influenced by the resident and invader competition coefficients and the growth rate of the invader species. Our findings support prioritizing the conservation of compensatory and weakly synchronous communities which may be at increased risk of invasion.


Assuntos
Ecossistema , Espécies Introduzidas
18.
Sci Rep ; 13(1): 9701, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322107

RESUMO

Temporal patterns of plant-insect interactions are readily observed within fossil datasets but spatial variability is harder to disentangle without comparable modern methods due to limitations in preservation. This is problematic as spatial variability influences community structure and interactions. To address this we replicated paleobotanical methods within three modern forests, creating an analogous dataset that rigorously tested inter- and intra-forest plant-insect variability. Random mixed effects models, non-metric multidimensional scaling (NMDS) ordinations, and bipartite network- and node-level metrics were used. Total damage frequency and diversity did not differ across forests but differences in functional feeding groups (FFGs) were observed across forests, correlating with plant diversity, evenness, and latitude. Overall, we found higher generalized herbivory within the temperate forests than the wet-tropical, a finding also supported by co-occurrence and network analyses at multiple spatial scales. Intra-forest analyses captured consistent damage type communities, supporting paleobotanical efforts. Bipartite networks captured the feeding outbreak of Lymantria dispar caterpillars; an exciting result as insect outbreaks have long been unidentifiable within fossil datasets. These results support paleobotanical assumptions about fossil insect herbivore communities, provide a comparative framework between paleobotanical and modern communities, and suggest a new analytical framework for targeting modern and fossil outbreaks of insect feeding.


Assuntos
Herbivoria , Mariposas , Animais , Fósseis , Florestas , Insetos , Plantas , Árvores , Biodiversidade
19.
Trends Ecol Evol ; 38(11): 1085-1096, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37468343

RESUMO

Advances in restoration ecology are needed to guide ecological restoration in a variable and changing world. Coexistence theory provides a framework for how variability in environmental conditions and species interactions affects species success. Here, we conceptually link coexistence theory and restoration ecology. First, including low-density growth rates (LDGRs), a classic metric of coexistence, can improve abundance-based restoration goals, because abundances are sensitive to initial treatments and ongoing variability. Second, growth-rate partitioning, developed to identify coexistence mechanisms, can improve restoration practice by informing site selection and indicating necessary interventions (e.g., site amelioration or competitor removal). Finally, coexistence methods can improve restoration assessment, because initial growth rates indicate trajectories, average growth rates measure success, and growth partitioning highlights interventions needed in future.


Assuntos
Ecossistema , Modelos Biológicos , Ecologia
20.
Ecology ; 103(12): e3819, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35855596

RESUMO

Pathogen coexistence depends on ecological processes operating at both within and between-host scales, making it difficult to quantify which processes may promote or prevent coexistence. Here, we propose that adapting modern coexistence theory-traditionally applied in plant communities-to pathogen systems provides an exciting approach for examining mechanisms of coexistence operating across different spatial scales. We first overview modern coexistence theory and its mechanistic decomposition; we subsequently adapt the framework to quantify how spatial variation in pathogen density, host resources and immunity, and their interaction may promote pathogen coexistence. We apply this derivation to an example two pathogen, multiscale model comparing two scenarios with generalist and strain-specific immunity: one with demographic equivalency among pathogens and one with demographic trade-offs among pathogens. We then show how host-pathogen feedbacks generate spatial heterogeneity that promote pathogen coexistence and decompose those mechanisms to quantify how each spatial heterogeneity contributes to that coexistence. Specifically, coexistence of demographically equivalent pathogens occurs due to spatial variation in host resources, immune responses, and pathogen aggregation. With a competition-colonization trade-off, the superior colonizer requires spatial heterogeneity to coexist, whereas the superior competitor does not. Finally, we suggest ways forward for linking theory and empirical tests of coexistence in disease systems.


Assuntos
Ecossistema , Plantas , Modelos Biológicos , Ecologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa