Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 225(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36337048

RESUMO

Predictions of individual responses to climate change are often based on the assumption that temperature affects the metabolism of individuals independently of their body mass. However, empirical evidence indicates that interactive effects exist. Here, we investigated the response of individual standard metabolic rate (SMR) to annual temperature range and forecasted temperature rises of 0.6-1.2°C above the current maxima, under the conservative climate change scenario IPCC RCP2.6. As a model organism, we used the amphipod Gammarus insensibilis, collected across latitudes along the western coast of the Adriatic Sea down to the southernmost limit of the species' distributional range, with individuals varying in body mass (0.4-13.57 mg). Overall, we found that the effect of temperature on SMR is mass dependent. Within the annual temperature range, the mass-specific SMR of small/young individuals increased with temperature at a greater rate (activation energy: E=0.48 eV) than large/old individuals (E=0.29 eV), with a higher metabolic level for high-latitude than low-latitude populations. However, under the forecasted climate conditions, the mass-specific SMR of large individuals responded differently across latitudes. Unlike the higher-latitude population, whose mass-specific SMR increased in response to the forecasted climate change across all size classes, in the lower-latitude populations, this increase was not seen in large individuals. The larger/older conspecifics at lower latitudes could therefore be the first to experience the negative impacts of warming on metabolism-related processes. Although the ecological collapse of such a basic trophic level (aquatic amphipods) owing to climate change would have profound consequences for population ecology, the risk is significantly mitigated by phenotypic and genotypic adaptation.


Assuntos
Anfípodes , Mudança Climática , Humanos , Animais , Anfípodes/fisiologia , Temperatura , Adaptação Fisiológica , Aclimatação
2.
Oecologia ; 199(2): 377-386, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35678931

RESUMO

The behavioural choices made by foragers regarding the use of resource patches have a direct influence on the energy balance of the individual. Given that several individual traits linked to the acquisition of spatially distributed resources increase with body size (e.g., energy requirements, resource ingestion rates, and movement capacity), it is reasonable to expect size dependencies in overall foraging behaviour. In this study, we tested how body size influences the number, duration, and frequency of foraging episodes in heterogeneous resource patches. To this end, we performed microcosm experiments using the aquatic amphipod Gammarus insensibilis as a model organism. An experimental maze was used to simulate a habitat characterised by resource-rich, resource-poor, and empty patches under controlled conditions. The patch use behaviour of 40 differently sized specimens foraging alone in the experimental maze was monitored via an advanced camera setup. Overall, we observed that individual body size exerted a major influence on the use of resource patches over time. Larger individuals had stronger preference for the resource-rich patches initially and visited them more frequently than smaller individuals, but for shorter periods of time. However, larger individuals subsequently decreased their use of resource-rich patches in favour of resource-poor patches, while smaller individuals continued to prefer resource-rich patches for the whole experimental time. With body size being a key organismal trait, our observations support the general understanding of foraging behaviours related to preference, patch use, and abandonment.


Assuntos
Anfípodes , Animais , Tamanho Corporal , Ecossistema , Comportamento Alimentar , Humanos
3.
Ecotoxicol Environ Saf ; 130: 207-13, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27123973

RESUMO

Polycyclic Aromatic Hydrocarbons (PAHs) are discharged into aquatic environments through anthropogenic activities mainly industrial and municipal effluents. There is little information on the adverse effects of pyrene, a member of the PAH family which is classified as a priority pollutant by the USEPA, on fish biochemical and physiological endpoints, particularly thyroid hormones. The present study investigated the effects of subacute semi-static pyrene exposure on biochemical, enzymological and ionoregulatory responses as well as thyroid hormones in common carp (Cyprinus carpio). The fish (140±10g, 1(+) year) were exposed to 10, 50 and 100µg/l nominal concentrations of pyrene for 35 days. The results revealed that pyrene at these concentrations significantly altered plasma levels of glucose, cholesterol, triglyceride, total protein, albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP). Moreover, plasma thyroid hormones (T3 and T4) were significantly decreased in fish exposed to pyrene. In contrast, plasma electrolytes (sodium, potassium and calcium) levels remained statistically unchanged after exposure to the various pyrene concentrations. In conclusion, the studied biomarkers may be used as monitoring tools to evaluate pyrene toxicity. Pyrene induced diverse effects on the physiological endpoints of common carp, thus this chemical should be considered in toxicity studies concerning PAHs. Furthermore, this study confirmed that there was an interaction between pyrene and the thyroid system in fish. Therefore, the thyroid system may be used to assess the impact of pyrene on fish.


Assuntos
Carpas/sangue , Pirenos/toxicidade , Tiroxina/sangue , Tri-Iodotironina/sangue , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Colesterol/sangue , Albumina Sérica/efeitos dos fármacos , Hormônios Tireóideos , Triglicerídeos/sangue
4.
Ecol Evol ; 14(5): e11253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770126

RESUMO

Elucidating the underlying mechanisms behind variations of animal space and resource use is crucial to pinpoint relevant ecological phenomena. Organism's traits related to its energy requirements might be central in explaining behavioral variation, as the ultimate goal of a forager is to fulfill its energy requirements. However, it has remained poorly understood how energy requirements and behavioral patterns are functionally connected. Here we aimed to assess how body mass and standard metabolic rate (SMR) influence behavioral patterns in terms of cumulative space use and time spent in an experimental patchy environment, both within species and among individuals irrespective of species identity. We measured the behavioral patterns and SMR of two invertebrate species, that is, amphipod Gammarus insensibilis, and isopod Lekanesphaera monodi, individually across a range of body masses. We found that species of G. insensibilis have higher SMR level, in addition to cumulatively exploring a larger space than L. monodi. Cumulative space use scaled allometrically with body mass, and it scaled isometrically with SMR in both species. While time spent similarly in both species was characterized by negative body mass and SMR dependence, it was observed that L. monodi individuals tended to stay longer in resource patches compared to G. insensibilis individuals. Our results further showed that within species, body mass and metabolic rate explained a similar amount of variation in behavior modes. However, among individuals, regardless of species identity, SMR had stronger predictive power for behavioral modes compared to body mass. This suggests that SMR might offer a more generalized and holistic description of behavioral patterns that extend beyond species identity. Our study on the metabolic and body mass scaling of space and resource use behavior sheds light on higher-order ecological processes such as species' competitive coexistence along the spatial and trophic dimensions.

5.
Ecol Evol ; 11(7): 3004-3014, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841762

RESUMO

Individual space and resource use are central issues in ecology and conservation. Recent technological advances such as automated tracking techniques are boosting ecological research in this field. However, the development of a robust method to track space and resource use is still challenging for at least one important ecosystem component: motile aquatic macroinvertebrates. The challenges are mostly related to the small body size and rapid movement of many macroinvertebrate species and to light scattering and wave signal interference in aquatic habitats.We developed a video tracking method designed to reliably assess space use behavior among individual aquatic macroinvertebrates under laboratory (microcosm) conditions. The approach involves the use of experimental apparatus integrating a near infrared backlight source, a Plexiglas multi-patch maze, multiple infrared cameras, and automated video analysis. It allows detection of the position of fast-moving (~ 3 cm/s) and translucent individuals of small size (~ 5 mm in length, ~1 mg in dry weight) on simulated resource patches distributed over an experimental microcosm (0.08 m2).To illustrate the adequacy of the proposed method, we present a case study regarding the size dependency of space use behavior in the model organism Gammarus insensibilis, focusing on individual patch selection, giving-up times, and cumulative space used.In the case study, primary data were collected on individual body size and individual locomotory behavior, for example, mean speed, acceleration, and step length. Individual entrance and departure times were recorded for each simulated resource patch in the experimental maze. Individual giving-up times were found to be characterized by negative size dependency, with patch departure occurring sooner in larger individuals than smaller ones, and individual cumulative space used (treated as the overall surface area of resource patches that individuals visited) was found to scale positively with body size.This approach to studying space use behavior can deepen our understanding of species coexistence, yielding insights into mechanistic models on larger spatial scales, for example, home range, with implications for ecological and evolutionary processes, as well as for the management and conservation of populations and ecosystems. Despite being specifically developed for aquatic macroinvertebrates, this method can also be applied to other small aquatic organisms such as juvenile fish and amphibians.

6.
Sci Total Environ ; 792: 148215, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465034

RESUMO

Tidal flats are biogeomorphic landscapes, shaped by physical forces and interaction with benthic biota. We used a metabolic approach to assess the overarching effect of bioturbators on tidal landscapes. The benthic bivalve common cockle (Cerastoderma edule) was used as model organism. The effect of C. edule on sediment resuspension was approximated as a function of the overall population metabolic rate per unit of area. We combined i) laboratory observations on how C. edule affect sediment resuspension along gradients of bioturbation activity, sediment cohesiveness and hydrodynamic force with ii) spatial data on the natural distribution of intertidal C. edule populations. This allowed us to build an integrated model of the C. edule effect on sediment resuspension along the tidal gradient. Owing to the temperature dependence of metabolic rate, the model also accounted for seasonal variation in bioturbators activity. Laboratory experiments indicated that sediment resuspension is positively related to the metabolic rate of the C. edule population especially in cohesive sediments. Based on this observation, we predicted a clear spatial and seasonal pattern in the relative importance of C. edule contribution to sediment resuspension along a tidal transect. At lower elevations, our model indicates that hydrodynamics overrules biotic effects; at higher elevations, inter-tidal hydrodynamics should be too low to suspend bioturbated sediments. The influence of C. edule on sediment resuspension is expected to be maximal at the intermediate elevation of a mudflat, owing to the combination of moderate hydrodynamic stress and high bioturbator activity. Also, bio-mediated sediment resuspension is predicted to be particularly high in the warm season. Research into metabolic dependency of bio-mediated sediment resuspension may help to place phenomenological observations in the broader framework of metabolic theories in ecology and to formulate general expectations on the coastal ecosystem functioning.


Assuntos
Bivalves , Cardiidae , Animais , Ecossistema , Sedimentos Geológicos , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa