Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Environ Res ; 263(Pt 1): 119982, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270960

RESUMO

Oxy-fuel circulating fluidized bed combustion is known as one of the most potent fuel combustion technologies that capture ultra-low greenhouse gases and pollutant emissions. While many investigations have been conducted for carbon capturing, the associated in-situ desulfurization process using calcium-based sorbents should also be underlined. This paper critically reviews the effects of changes in the operating environment on in-situ desulfurization processes compared to conventional air combustion. A comprehensive understanding of the process, encompassing hydrodynamic, physical and chemical aspects can be a guideline for designing the oxy-fuel combustion process with effective sulfur removal, potentially eliminating the need of a flue gas desulfurization unit. Results from thermogravimetric analyzers and morphological changes of calcium-based materials were presented to offer an insight into the sulfation mechanisms involved in the oxy-fuel circulating fluidized beds. Recently findings suggested that in-situ direct desulfurization is influenced not only by the desulfurization kinetics but also by the fluidization characteristics of calcium-based materials. Therefore, a complex reaction analysis that incorporated oxy-combustion reactions, computational fluid dynamics modeling, in-situ desulfurization reaction models and particle behavior can provide a thorough understanding of desulfurization processes across the reactor. Meanwhile, machine learning as a robust tool to predict desulfurization efficiency and improve operational flexibility should be applied with consideration of environmental improvement and economic feasibility.

2.
Semin Cancer Biol ; 86(Pt 2): 976-989, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33737109

RESUMO

The use of fungal cultures have been well documented in human history. Although its used in healthcare, like penicillin and statins, have saved countless of lives, but there is still no fungal products that are specifically indicated for cancers. Research into fungal-derived materials to curb cancers in the recent decades have made a considerable progress in terms of drug delivery vehicles, anticancer active ingredients and cancer immunotherapy. Various parts of the organisms have successfully been exploited to achieve specific tasks. Apart from the identification of novel anticancer compound from fungi, its native capsular structure can also be used as drug cargo to achieve higher oral bioavailability. This review summarises the anticancer potential of fungal-derived materials, highlighting the role of capsular polysaccharides, proteins, and other structures in variety of innovative utilities to fit the current pharmaceutical technology. Many bioactive compounds isolated from fungi have also been formulated into nanoparticles to achieve greater anticancer activity. The progress of fungal compounds and their analogues in clinical trials is also highlighted. In addition, the potential of various fungal species to be developed for anticancer immunotherapy are also discussed.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fungos/química , Fungos/metabolismo , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Imunoterapia
3.
Environ Res ; 227: 115320, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706904

RESUMO

The present study develops a novel concept of using waste media as an algal nutrient resource compared to the usual growth media with the aid of growth kinetics study and metabolite production abilities. Food- and agri-compost wastes are compact structures with elemental compounds for microbial media. As a part of the study, environ-burden wastes (3:1) as a food source for photosynthetic algae as a substitute for the costly nutrient media were proposed. The environment-burden waste was also envisaged for macromolecule production, i.e., 99200 µg/ml lipid, 112.5 µg/ml protein, and 8.75 µg/ml carbohydrate with different dilutions of agri-waste, bold basal media (BBM), and Food waste, respectively. The fabricated growth kinetics and dynamics showcased the unstructured models of different photosynthetic algal growth phases and the depiction of productivity and kinetic parameters. The theoretical maximum biomass concentration (Xp) was found to be more (0.871) with diluted agricompost media than the usual BBM (0.697). The XLim values were found to be 0.362, 0.323 and 0.209 for BBM, diluted agri-compost media and diluted food waste media, respectively. Overall, the study proposes a cleaner approach of utilizing the wastes as growth media through a circular economy approach which eventually reduces the growth media cost with integrated macromolecule production capabilities.


Assuntos
Compostagem , Microalgas , Eliminação de Resíduos , Alimentos , Biocombustíveis , Biomassa
4.
Environ Res ; 234: 116534, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399983

RESUMO

Heterogeneous advanced oxidation process has been widely studied as an effective method for removing organic pollutants in wastewater, but the development of efficient catalysts is still challenging. This review summaries the present status of researches on biochar/layered double hydroxides composites (BLDHCs) as catalysts for treatment of organic wastewater. The synthesis methods of layered double hydroxides, the characterizations of BLDHCs, the impacts of process factors influencing catalytic performance, and research advances in various advanced oxidation processes are discussed in this work. The integration of layered double hydroxides and biochar provides synthetic effects for improving pollutant removal. The enhanced pollutant degradation in heterogeneous Fenton, sulfate radical-based, sono-assisted, and photo-assisted processes using BLDHCs have been verified. Pollutant degradation in heterogeneous advanced oxidation processes using BLDHCs is influenced by process factors such as catalyst dosage, oxidant addition, solution pH, reaction time, temperature, and co-existing substances. BLDHCs are promising catalysts due to the unique features including easy preparation, distinct structure, adjustable metal ions, and high stability. Currently, catalytic degradation of organic pollutants using BLDHCs is still in its infancy. More researches should be conducted on the controllable synthesis of BLDHCs, the in-depth understanding of catalytic mechanism, the improvement of catalytic performance, and large-scale application of treating real wastewater.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Hidróxidos , Oxirredução
5.
Environ Res ; 219: 115071, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36528046

RESUMO

To remove harmful volatile organic compounds (VOCs) including 2-butanone (methyl ethyl ketone, MEK) emitted from various industrial plants is very important for the clean air. Also, it is worthwhile to recycle porous spent fluid catalytic cracking (SFCC) catalysts from various petroleum refineries in terms of reducing industrial waste and the reuse of discharged resources. Therefore, Mn and Mn-Cu added SFCC (Mn/SFCC and Mn-Cu/SFCC) catalysts were prepared to compare their catalytic efficiencies together with the SFCC catalyst in the ozonation of 2-butanone. Since the SFCC-based catalysts have a structure similar to that of zeolite Y (Y), the Mn-loaded zeolite Y catalyst (Mn/Y) was also prepared to compare its activity for the removal of 2-butanone and ozone to that of the SFCC-based ones at room temperature. Among the five catalysts of this study (Y, Mn/Y, SFCC, Mn/SFCC, and Mn-Cu/SFCC), the Mn-Cu/SFCC and Mn/SFCC catalysts showed the better catalytic decomposition activity than the others. The increased distributions of the Mn3+ species and the Ovacancy sites in Mn/SFCC and Mn-Cu/SFCC catalysts which could supply more available active sites for the 2-butanone and ozone removal would enhance the catalytic activity of them.


Assuntos
Ozônio , Zeolitas , Ozônio/química , Porosidade , Catálise
6.
Environ Res ; 223: 115429, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746207

RESUMO

Cellulose is the most abundant polysaccharide on earth. It has a large number of desirable properties. Its low toxicity makes it more useful for a variety of applications. Nowadays, its composites are used in most engineering fields. Composite consists of a polymer matrix and use as a reinforcing material. By reducing the cost of traditional fibers, it has an increasing demand for environment-friendly purposes. The use of these types of composites is inherent in moisture absorption with hindered natural fibers. This determines the reduction of polymer composite material. By appropriate chemical surface treatment of cellulose composite materials, the effect could be diminished. The most modern and advanced techniques and methods for the preparation of cellulose and polymer composites are discussed here. Cellulosic composites show a reinforcing effect on the polymer matrix as pointed out by mechanical characterization. Researchers tried their hard work to study different ways of converting various agricultural by-products into useful eco-friendly polymer composites for sustainable production. Cellulose plays building blocks, that are critical for polymer products and their engineering applications. The most common method used to prepare composites is in-situ polymerization. This help to increase the yields of cellulosic composites with a significant enhancement in thermal stability and mechanical properties. Recently, cellulose composites used as enhancing the incorporation of inorganic materials in multi-functional properties. Furthermore, we have summarized in this review the potential applications of cellulose composites in different fields like packaging, aerogels, hydrogels, and fibers.


Assuntos
Celulose , Polímeros , Celulose/química , Estudos Prospectivos
7.
Environ Res ; 218: 114983, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462696

RESUMO

Dearomatization through photocatalytic oxidation is a swiftly rising phenolic compounds removal technology that works at trifling operations requirements with a special emphasis on the generation of nontoxic products. The study aims to develop a LaVO4/MCM-48 nanocomposite that was prepared via a hydrothermally approach assisting the employment of an MCM-48 matrix, which was then utilized for phenol degradation processes. Various techniques including UV-Vis DRS, FTIR, PL, Raman, TEM, and BET analyses are employed to characterize the developed photocatalyst. The developed photocatalyst presented remarkable characteristics, especially increased light photon utilization, and reduced recombination rate leading to enhanced visible-light-driven photodegradation performance owing to the improved specific surface area, specific porosities, and <2 eV narrow energy bandgap. The LaVO4/MCM-48 nanocomposite was experienced on aqueous phenol solution having 20 mg/L concentration under visible-light exposure, demonstrating exceptional performance in photodegradation up to 99.28%, comparatively higher than pure LaVO4. The conducted kinetic measurements revealed good accordance with pseudo first-order. A possible reaction mechanism for photocatalytic degradation was also predicted. The as-synthesized LaVO4/MCM-48 nanocomposite presented excellent stability and recyclability.


Assuntos
Nanocompostos , Fenol , Águas Residuárias , Luz , Fenóis
8.
Environ Res ; 219: 114997, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529326

RESUMO

Heavy metal toxicity affects aquatic plants and animals, disturbing biodiversity and ecological balance causing bioaccumulation of heavy metals. Industrialization and urbanization are inevitable in modern-day life, and control and detoxification methods need to be accorded to meet the hazardous environment. Microorganisms and plants have been widely used in the bioremediation of heavy metals. Sporosarcina pasteurii, a gram-positive bacterium that is widely known for its calcite precipitation property in bio-cementing applications has been explored in the study for its metal tolerance ability for the first time. S. pasteurii SRMNP1 (KF214757) can tolerate silver stress to form nanoparticles and can remediate multiple heavy metals to promote the growth of various plants. This astounding property of the isolate warranted extensive examinations to comprehend the physiological changes during an external heavy metal stress condition. The present study aimed to understand various physiological responses occurring in S. pasteuriiSRMNP1 during the metal tolerance phenomenon using electron microscopy. The isolate was subjected to heavy metal stress, and a transmission electron microscope examination was used to analyze the physiological changes in bacteria to evade the metal stress. S. pasteurii SRMNP1 was tolerant against a wide range of heavy metal ions and can withstand a broad pH range (5-9). Transmission Electron Microscopy (TEM) examination of S. pasteurii SRMNP1 followed by 5 mM nickel sulfate treatment revealed the presence of nanovesicles encapsulating nanosized particles in intra and extracellular spaces. This suggests that the bacteria evade the metal stress by converting the metal ions into nanosized particles and encapsulating them within nanovesicles to efflux them through the vesicle budding mechanism. Moreover, the TEM images revealed an excessive secretion of extracellular polymeric substances by the strain to discharge the metal particles outside the bacterial system. S. pasteurii can be foreseen as an effective bioremediation agent with the potential to produce nanosized particles, nanovesicles, and extracellular polymeric substances. This study provides physiological evidence that, besides calcium precipitation applications, S. pasteurii can further be explored for its multidimensional roles in the fields of drug delivery and environmental engineering.


Assuntos
Metais Pesados , Poluentes do Solo , Matriz Extracelular de Substâncias Poliméricas , Solo , Metais Pesados/toxicidade , Metais Pesados/química , Prata , Biodegradação Ambiental , Bactérias , Íons , Poluentes do Solo/toxicidade
9.
Environ Res ; 219: 115070, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549497

RESUMO

In this study, nickel-loaded perovskite oxides catalysts were synthesized via the impregnation of 10%Ni on XTiO3 (X = Ce, Sr, La, Ba, Ca, and Fe) supports and employed in the catalytic steam gasification of swine manure to produce H2-rich syngas for the first time. The synthesized catalysts were characterized using BET, H2-TPR, XRD, HR-TEM, and EDX analysis. Briefly, using perovskite supports resulted in the production of ultrafine catalyst nanoparticles with a uniform dispersion of Ni particles. According to the catalytic activity test, the gas yield showed the increment as 10% Ni/LaTiO3 < 10% Ni/FeTiO3 < 10% Ni/CeTiO3 < 10% Ni/BaTiO3 < 10% Ni/SrTiO3 < 10% Ni/CaTiO3. Meanwhile, zero coke formation was achieved due to the oxygen mobility of prepared catalysts. Also, the increase in the H2 production for the applied catalysts was in the sequence as 10% Ni/CeTiO3 < 10% Ni/FeTiO3 < 10% Ni/LaTiO3 < 10% Ni/BaTiO3 < 10% Ni/SrTiO3 < 10% Ni/CaTiO3. The maximum H2 selectivity (∼48 vol%) obtained by10% Ni/CaTiO3 was probably due to the synergistic effect of Ni and Ti on enhancing the water-gas shift reaction, and Ca on creating the maximum oxygen mobility compared to other alkaline earth metals doped at the A place of perovskite. Overall, this study provides a suitable solution for enhanced H2 production through steam gasification of swine manure along with suggesting the appropriate supports to prevent Ni deactivation by lowering coke formation at the same time.


Assuntos
Coque , Vapor , Animais , Suínos , Níquel , Esterco , Óxidos , Catálise , Oxigênio
10.
Environ Res ; 222: 115348, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731596

RESUMO

The International Maritime Organization has set a goal to achieve a 50% reduction of total annual greenhouse gas emission related to the international shipping by 2050 compared to the 2008 baseline emissions. Malaysia government has taken an initiative to investigate the assessment (cost-effectiveness) of this International Maritime Organization's short-term measure on Malaysian-registered domestic ships although this measure is only for international merchant ship. To achieve this, this paper collected the ship's data from the shipowners from 25 sample ships. Engine power limitation is the most cost-effective option, but low power limits can lead to substantially increased sailing times. Based on cost-efficiency analysis, it creates for the purpose of compliance with the operational carbon intensity indicator. It found that even if it is possible to bring an asset back into service, it may not be possible to do so in a manner that generates a profit or complies with applicable regulations. In these situations, it may be more prudent to scrap the asset rather than run the risk of having it become a stranded asset. This is especially true for older tankers. Alternatives with lengthy payback periods are not desirable for the domestic tanker fleet that is already in operation.


Assuntos
Gases de Efeito Estufa , Navios , Conservação dos Recursos Naturais , Conservação de Recursos Energéticos
11.
Environ Res ; 222: 115253, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702191

RESUMO

Epoxy resins are important thermosetting polymers. They are widely used in many applications i.e., adhesives, plastics, coatings and sealers. Epoxy molding compounds have attained dominance among common materials due to their excellent mechanical properties. The sol-gel simple method was applied to distinguish the impact on the colloidal time. The properties were obtained with silica-based fillers to enable their mechanical and thermal improvement. The work which we have done here on epoxy-based nanocomposites was successfully modified. The purpose of this research was to look into the effects of cellulose nanocrystals (CNCs) on various properties and applications. CNCs have recently attracted a lot of interest in a variety of industries due to their high aspect ratio, and low density which makes them perfect candidates. Adding different amounts of silica-based nanocomposites to the epoxy system. Analyzed with different techniques such as Fourier-transformed infrared spectroscope (FTIR), thermogravimetric analysis (TGA) and scanning electronic microscopic (SEM) to investigate the morphological properties of modified composites. The various %-age of silica composite was prepared in the epoxy system. The 20% of silica was shown greater enhancement and improvement. They show a better result than D-400 epoxy. Increasing the silica, the transparency of the films decreased, because clustering appears. This shows that the broad use of CNCs in environmental engineering applications is possible, particularly for surface modification, which was evaluated for qualities such as absorption and chemical resistant behavior.


Assuntos
Celulose , Nanopartículas , Celulose/química , Celulose/ultraestrutura , Porosidade , Água/química , Dióxido de Silício/química , Nanopartículas/química
12.
Environ Res ; 222: 115314, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738770

RESUMO

The critical challenge being faced by our current modern society on a global scale is to reduce the surging effects of climate change and global warming, being caused by anthropogenic emissions of CO2 in the environment. Present study reports the surface driven adsorption potential of deep eutectic solvents (DESs) surface functionalized cerium oxide nanoparticles (CeNPs) for low pressure CO2 separation. The phosphonium based DESs were prepared using tetra butyl phosphoniumbromide as hydrogen bond acceptor (HBA) and 6 acids as hydrogen bond donors (HBDs). The as-developed DESs were characterized and employed for the surface functionalization of CeNPs with their subsequent utilization in adsorption-based CO2 adsorption. The synthesis of as-prepared DESs was confirmed through FTIR measurements and absence of precipitates, revealed through visual observations. It was found that DES6 surface functionalized CeNPs demonstrated 27% higher adsorption performance for CO2 capturing. On the contrary, DES3 coated CeNPs exhibited the least adsorption progress for CO2 separation. The higher adsorption performance associated with DES6 coated CeNPs was due to enhanced surface affinity with CO2 molecules that must have facilitated the mass transport characteristics and resulted an enhancement in CO2 adsorption performance. Carboxylic groups could have generated an electric field inside the pores to attract more polarizable adsorbates including CO2, are responsible for the relatively high values of CO2 adsorption. The quadruple movement of the CO2 molecules with the electron-deficient and pluralizable nature led to the enhancement of the interactive forces between the CO2 molecules and the CeNPs decorated with the carboxylic group hydrogen bond donor rich DES. The current findings may disclose the new research horizons and theoretical guidance for reduction in the environmental effects associated with uncontrolled CO2 emission via employing DES surface coated potential CeNPs.


Assuntos
Cério , Nanopartículas , Dióxido de Carbono , Solventes Eutéticos Profundos , Cério/química , Solventes/química
13.
Environ Res ; 218: 114948, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455634

RESUMO

Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.


Assuntos
Poluentes Ambientais , Microalgas , Águas Residuárias , Biodegradação Ambiental , Plásticos , Biomassa , Biocombustíveis
14.
Environ Res ; 217: 114784, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36395868

RESUMO

Vast amounts of plastic waste are causing serious environmental issues and urge to develop of new remediation methods. The aim of the study is to determine the role of inorganic (nitric acid), organic (starch addition), and biological (Pseudomonas aeruginosa) soil amendments on the degradation of Polyethylene (PE) and phytotoxic assessment for the growth of lettuce plant. The PE-degrading bacteria were isolated from the plastic-contaminated soil. The strain was identified as Pseudomonas aeruginosa (OP007126) and showed the highest degradation percentage for PE. PE was pre-treated with nitric acid as well as starch and incubated in the soil, whereas P. aeruginosa was also inoculated in PE-contaminated soils. Different combinations were also tested. FTIR analysis and weight reduction showed that though nitric acid was efficient in degradation, the combined application of starch and bacteria also showed effective degradation of PE. Phytotoxicity was assessed using morphological, physiological, and biochemical parameters of plant. Untreated PE significantly affected plants' physiology, resulting in a 45% reduction in leaf chlorophyll and a 40% reduction in relative water content. It also had adverse effects on the biochemical parameters of lettuce. Bacterial inoculation and starch treatment mitigated the harmful impact of stress and improved plants' growth as well as physiological and biochemical parameters; however, the nitric treatment proved phytotoxic. The observed results revealed that bacteria and starch could be effectively used for the degradation of pre-treated PE.


Assuntos
Pseudomonas aeruginosa , Poluentes do Solo , Biodegradação Ambiental , Polietileno/metabolismo , Hidrólise , Ácido Nítrico/metabolismo , Plantas , Solo/química , Poluentes do Solo/química , Microbiologia do Solo
15.
J Nanobiotechnology ; 21(1): 370, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817254

RESUMO

Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.


Assuntos
Microalgas , Nanopartículas , Edição de Genes , Sistemas CRISPR-Cas/genética , Microalgas/genética , Engenharia Genética
16.
J Environ Manage ; 344: 118363, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413724

RESUMO

Three-dimensional heteroatom-doped graphene presents a state-of-the-art approach for effective remediation of pharmaceutical wastewater on account of its distinguished adsorption and physicochemical attributes. Amitriptyline is an emerging tricyclic antidepressant pollutant posing severe risks to living habitats through water supply and food chain. With ultra-large surface area and plentiful chemical functional groups, graphene oxide is a favorable adsorbent for decontaminating polluted water. Herein, a new boron-doped graphene oxide composite reinforced with carboxymethyl cellulose was successfully developed via solution-based synthesis. Characterization study revealed that the adsorbent was formed by graphene sheets intertwined into a porous network and engrafted with 13.37 at% of boron. The adsorbent has a zero charge at pH 6 and contained various chemical functional groups favoring the attachment of amitriptyline. It was also found that a mere 10 mg of adsorbent was able to achieve relatively high amitriptyline removal (89.31%) at 50 ppm solution concentration and 30 °C. The amitriptyline adsorption attained equilibrium within 60 min across solution concentrations ranging from 10 to 300 ppm. The kinetic and equilibrium of amitriptyline adsorption were well correlated to the pseudo-second-order and Langmuir models, respectively, portraying the highest Langmuir adsorption capacity of 737.4 mg/g. Notably, the predominant mechanism was chemisorption assisted by physisorption that contributed to the outstanding removal of amitriptyline. The saturated adsorbent was sufficiently regenerated using ethanol eluent. The results highlighted the impressive performance of the as-synthesized boron-doped adsorbent in treating amitriptyline-containing waste effluent.


Assuntos
Grafite , Poluentes Químicos da Água , Grafite/química , Amitriptilina , Boro , Adsorção , Preparações Farmacêuticas , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
17.
J Environ Manage ; 338: 117779, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023603

RESUMO

Environmental pollution has become a transnational issue that impacts ecosystems, soil, water, and air and is directly related to human health and well-being. Chromium pollution decreases the development of plant and microbial populations. It warrants the need to remediate chromium-contaminated soil. Decontaminating chromium-stressed soils via phytoremediation is a cost-effective and environmentally benign method. Using multifunctional plant growth-promoting rhizobacteria (PGPR) lower chromium levels and facilitates chromium removal. PGPR work by altering root architecture, secreting chemicals that bind metals in the rhizosphere, and reducing phytotoxicity brought on by chromium. The present study aimed to investigate the chromium bioremediation capacity of metal-tolerant PGPR isolate while promoting the growth of chickpeas in the presence of varying levels of chromium (15.13, 30.26, and 60.52 mg/kg of chromium). The isolate, Mesorhizobium strain RC3, substantially reduced chromium content (60.52 mg/kg) in the soil. It enhanced the root length by 10.87%, the shoot length by 12.38%, the number of nodules by 6.64%, and nodule dry weight by 13.77% at 90 days. After 135 days of sowing, more improvement in the root length (18.05), shoot length (21.60%)the chlorophyll content (6.83%), leghaemoglobin content (9.47%), and the highest growth in the crop seed yield (27.45%) and crop protein content (16.83%)The isolate reduced chromium accumulation in roots, shoots, and grains chickpea. Due to chromium bioremediation and its plant growth-promoting and chromium-attenuating qualities, Mesorhizobium strain RC3 could be used as a green bioinoculant for plant growth promotion under chromium stress.


Assuntos
Cicer , Mesorhizobium , Poluentes do Solo , Humanos , Cromo , Solo/química , Cicer/microbiologia , Ecossistema , Poluentes do Solo/toxicidade , Raízes de Plantas , Microbiologia do Solo , Biodegradação Ambiental
18.
J Food Sci Technol ; 60(3): 1097-1106, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36908365

RESUMO

Soy isoflavone extracts are widely researched for their distinctive potential in contributing to various functional foods. The research work focuses on testing the toxicity of purified soy isoflavone extracts in mice models. With an agreement of the animal ethics, acute toxicity is firstly used to screen the effects of test compounds in mice for therapeutic purposes. Moreover, tests were conducted on BALB/c for estrogen in vivo and MCF7 for in vitro, screening active protection of liver cells, lipid peroxidation and scavenging free radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH). Genistin and daidzin were found to be the two major compounds accounting for 47% and 35% of total purified soy isoflavones. The acute toxicity test results exhibited no effect against physiological accretion of BALB/c after 7-day administration with the given dose of 10 g/kgBW. Moreover, modified E-screen assay on MCF7 cells proved that the estrogen of isoflavone extracts induces cell proliferation by 15% compared with other non-steroid culture techniques. Therefore, this research contributes to helping researchers apply soy isoflavones in functional food, to alleviate the difficulties in menopausal symptoms for women in the future. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05491-4.

19.
Environ Res ; 213: 113721, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738420

RESUMO

This work presents the enhancement of oil biodegradation in seawater using a mixture of oil and microorganisms. Retardation of crude oil biodegradation in seawater is hypothetically due to the inhibiting of metabolites produced by the oil bacterium which inhibit its enzymes. For this purpose, the bacteria consortium consisting of an active oil-oxidizing bacterium (AR3-Pseudomonas pseudoalcaligenes) and two oil-resistant and active heterotrophic bacteria (OG1 and OG2-Erythrobacter citreus) were formed. The heterotrophic bacteria, OG1 and OG2 were able to remove metabolites produced during oil degradation. It was found that AR3 was retarded by metabolites, while OG1 and OG2 were able to grow in the metabolites. OG1 and OG2 were applied together to enhance growth and removal of the metabolites. About 59.9% of crude oil degradation was degraded by AR3 pure culture, while 68.6% was degraded by the bacteria consortium. About 31.4% of the crude oil was found to remain in seawater due to the presence of asphaltenes and resin hydrocarbons. The bacteria consortium was able to degrade 84.1% of total hydrocarbons while 67.0% was degraded by AR3. A total of 99.8% of the aliphatic content and 38.4% of the total aromatic hydrocarbons were degraded by the bacteria consortium, while a lower 79.4% of total aliphatic and 31.0% of total aromatic were degraded by AR3 under the same experimental conditions. The results which were obtained from this study support the hypothesis that the retardation of oil degradation by AR3 is due to the inhibition of metabolites on the growth.


Assuntos
Petróleo , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos , Água do Mar
20.
Environ Res ; 207: 112156, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599897

RESUMO

Herein, it is aimed to develop a high-performance monolithic adsorbent to be utilized in methyl orange (MO) adsorption. Therefore, amino-functionalized three-dimensional graphene networks (3D-GNf) fulfilling the requirements of reusability and high capacity have been fabricated via hydrothermal self-assembly approach followed by a double-crosslinking strategy. The potential utilization of 3D-GNf as an adsorbent for removal MO has been assessed using both batch-adsorption studies and an artificial neural network (ANN) approach. Graphene oxide sheets have been amino-functionalized and cross-linked, by ethylenediamine (EDA) during hydrothermal treatment, following the glutaraldehyde has used as a double-crosslinking agent to facilitate the crosslinking of architecture. The successful fabrication of 3D-GNf has been confirmed by field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR), Raman and X-ray photoelectron spectroscopy (XPS). Moreover, N2 adsorption/desorption isotherms have revealed the high specific surface area (1015 m2 g-1) with high pore volume (1.054 cm3 g-1) and hierarchical porous structure of 3D-GNf. The effect of initial concentration, contact time, and temperature on adsorption capacity have been thoroughly studied, and the kinetics, isotherms, and thermodynamics of MO adsorption have been modelled. The MO adsorption has been well defined by the pseudo-second-order kinetic model and Langmuir isotherm model with a monolayer adsorption capacity of 270.27 mg g-1 at 25 °C. The thermodynamic findings have revealed MO adsorption has occurred spontaneously with an endothermic process. The Levenberg-Marquardt backpropagation algorithm has been implemented to train the ANN model, which has used the activation functions of tansig and purelin functions at the hidden and output layers, respectively. An optimum ANN model with high-performance metrics (coefficient of determination, R2 = 0.9995; mean squared error, MSE = 0.0008) composed of three hidden layers with 5 neurons in each layer was constructed to forecast MO adsorption. The findings have shown that experimental results are consistent with ANN-based data, implying that the suggested ANN model may be used to forecast cationic dye adsorption.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Compostos Azo , Concentração de Íons de Hidrogênio , Cinética , Redes Neurais de Computação , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa