Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Physiol Rev ; 98(2): 559-621, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412049

RESUMO

Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.


Assuntos
Canalopatias/genética , Instabilidade Genômica/genética , Canais Iônicos/genética , Neoplasias/genética , Animais , Humanos , Canais Iônicos/metabolismo , Mutação/genética , Neoplasias/patologia , Transdução de Sinais/genética
2.
Neurourol Urodyn ; 41(8): 1670-1678, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35979707

RESUMO

AIMS: The urinary bladder is a mechanosensitive organ that accumulates, stores, and expels considerable amounts of fluid. While the neuronal bladder control via the CNS is well defined, the data on the mechanisms of local mechanical sensitivity of the bladder wall are either insufficient or contradictory. Here we compared the mechanical properties of bladder wall of normal rats and rats with modeled type 2 diabetes (T2D). METHODS: T2D was modeled in 3-month-old Wistar male rats by combined administration of nicotinamide (230 mg/kg) and streptozotocin (65 mg/kg). Cystometry of isolated, denervated whole bladders and stress-strain tensiometry on detrusor smooth muscle (DSM) strips were used to assess the mechanical properties of bladder wall tissues from control and diabetic animals on 10th week after induction. RESULTS: The pressure-volume cystometrograms of both control and T2D bladders featured a quasi plateau between ascending sections. T2D cystometrograms revealed markedly elevated intravesicular pressure (~100% at 1 ml) and a shortened plateau, consistent with decreased bladder wall elasticity and reduced structural bladder capacity versus control. Experiments on urothelium-intact and urothelium-devoid DSM strips have shown that the decrease of bladder walls elasticity in T2D can be explained by the switch of stretched urothelium from inducing DSM relaxation to inducing DSM contraction due to a change in the prevalent release of contractile versus relaxing urothelial factor(s). CONCLUSIONS: The decreased elasticity of the bladder walls in T2D results from alterations in urothelium-dependent mechanosensory mechanisms. Elevated intravesical pressure in T2D may contribute to urge incontinence and/or symptoms of upper urinary tract damage.


Assuntos
Diabetes Mellitus Tipo 2 , Bexiga Urinária , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 2/complicações , Ratos Wistar , Urotélio , Músculo Liso/fisiologia , Contração Muscular
3.
FASEB J ; 34(6): 7483-7499, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277850

RESUMO

Recent studies have revealed gender differences in cold perception, and pointed to a possible direct action of testosterone (TST) on the cold-activated TRPM8 (Transient Receptor Potential Melastatin Member 8) channel. However, the mechanisms by which TST influences TRPM8-mediated sensory functions remain elusive. Here, we show that TST inhibits TRPM8-mediated mild-cold perception through the noncanonical engagement of the Androgen Receptor (AR). Castration of both male rats and mice increases sensitivity to mild cold, and this effect depends on the presence of intact TRPM8 and AR. TST in nanomolar concentrations suppresses whole-cell TRPM8-mediated currents and single-channel activity in native dorsal root ganglion (DRG) neurons and HEK293 cells co-expressing recombinant TRPM8 and AR, but not TRPM8 alone. AR cloned from rat DRGs shows no difference from standard AR. However, biochemical assays and confocal imaging reveal the presence of AR on the cell surface and its interaction with TRPM8 in response to TST, leading to an inhibition of channel activity.


Assuntos
Receptores Androgênicos/metabolismo , Canais de Cátion TRPM/metabolismo , Testosterona/metabolismo , Androgênios/metabolismo , Animais , Linhagem Celular , Temperatura Baixa , Feminino , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ratos , Ratos Wistar
4.
J Cell Sci ; 126(Pt 19): 4479-89, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23943870

RESUMO

The mechanisms by which volatile general anaesthetics (VAs) produce a depression of central nervous system are beginning to be better understood, but little is known about a number of side effects. Here, we show that the cold receptor transient receptor potential melastatin 8 (TRPM8) undergoes a complex modulation by clinical concentrations of VAs in dorsal root ganglion neurons and HEK-293 cells heterologously expressing TRPM8. VAs produced a transient enhancement of TRPM8 through a depolarizing shift of its activation towards physiological membrane potentials, followed by a sustained TRPM8 inhibition. The stimulatory action of VAs engaged molecular determinants distinct from those used by the TRPM8 agonist. Transient TRPM8 activation by VAs could explain side effects such as inhibition of respiratory drive, shivering and the cooling sensation during the beginning of anaesthesia, whereas the second phase of VA action, that associated with sustained TRPM8 inhibition, might be responsible for hypothermia. Consistent with this, both hypothermia and the inhibition of respiratory drive induced by VAs are partially abolished in Trpm8-knockout animals. Thus, we propose TRPM8 as a new clinical target for diminishing common and serious complications of general anaesthesia.


Assuntos
Anestesia Geral/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Anestésicos Inalatórios/farmacologia , Gânglios Espinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Animais , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Hipotermia/induzido quimicamente , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPM/biossíntese , Canais de Cátion TRPM/genética , Transfecção
5.
Pflugers Arch ; 466(4): 635-44, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24449276

RESUMO

Ca(2+) entry is indispensable part of intracellular Ca(2+) signaling, which is vital for most of cellular functions. Low voltage-activated (LVA or T-type) calcium channels belong to the family of voltage-gated calcium channels (VGCCs) which provide Ca(2+) entry in response to membrane depolarization. VGCCs are generally characterized by exceptional Ca(2+) selectivity combined with high permeation rate, thought to be determined by the presence in their selectivity filter of a versatile Ca(2+) binding site formed by four glutamate residues (EEEE motif). The subfamily of LVA channels includes three members, Cav3.1, Cav3.2 and Cav3.3. They all possess two aspartates instead of glutamates (i.e., EEDD motif) in their selectivity filter and are the least Ca(2+)-selective of all VGCCs. They also have the lowest conductance, weakly discriminate Ca(2+), Sr(2+) and Ba(2+) and demonstrate channel-specific sensitivity to divalent metal blockers, such as Ni(2+). The available data suggest that EEDD binding site of LVA channels is more rigid compared to EEEE one, and their selectivity permeation and block are determined by two supplementary low-affinity intrapore Ca(2+) binding sites located above and below EEDD locus. In addition, LVA channels have extracellular metal binding site that allosterically regulates channel's gating, permeation and block depending on trace metals concentration.


Assuntos
Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Cálcio/metabolismo , Modelos Moleculares , Sequência de Aminoácidos , Animais , Canais de Cálcio Tipo T/química , Humanos , Dados de Sequência Molecular , Permeabilidade , Estrutura Secundária de Proteína
6.
J Surg Res ; 186(1): 119-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24157266

RESUMO

BACKGROUND: Bipolar electrosurgical tissue welding uses forceps-like electrodes for grasping the tissues and delivering high-frequency electric current (HFEC) to produce local heat, desiccation, and protein denaturation, resulting in the fusion of the contacting tissues. Although in this technique no electric current is flowing through the whole body to cause electric injury, depending on the frequency of applied energy, it may produce local excitation of intramural nerves, which can propagate beyond the surgical site potentially causing harmful effects. MATERIALS AND METHODS: The effects of varying frequency of HFEC on tissue excitability in bipolar electrosurgical modality were studied in vitro using electric field stimulation (EFS) method on multicellular smooth muscle strips of rat vas deferens. Contractile response to 5-s-long sine wave EFS train was taken as the measure of excitation of intramural nerves. RESULTS: EFS-induced contraction consisted of phasic and tonic components. The amplitude of both components decreased with increasing frequency, with tonic component disappearing at about 10 kHz and phasic component at about 50 kHz. Because components of EFS-induced contraction depend on different neurotransmitters, this indicates that various neurotransmitter systems are characterized by distinct frequency dependence, but above 50 kHz they all become inactivated. Bipolar electrosurgical sealing of porcine gut showed no difference in the structure of seal area at HFEC of 67 and 533 kHz. CONCLUSIONS: EFS frequency of 50 kHz represents the upper limit for excitation. HFEC above 50 kHz is safe to use for bipolar electrosurgical tissue welding without concerns of excitation propagating beyond the surgical site.


Assuntos
Eletrocirurgia/métodos , Acoplamento Excitação-Contração , Músculo Liso/fisiologia , Animais , Estimulação Elétrica , Masculino , Ratos , Ratos Wistar , Ducto Deferente/fisiologia
7.
Cell Mol Life Sci ; 70(9): 1653-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23250353

RESUMO

Nickel is considered to be a selective blocker of low-voltage-activated T-type calcium channel. Recently, the Ni(2+)-binding site with critical histidine-191 (H191) within the extracellular IS3-IS4 domain of the most Ni(2+)-sensitive Cav3.2 T-channel isoform has been identified. All calcium channels are postulated to also have intrapore-binding site limiting maximal current carried by permeating divalent cations (PDC) and determining the blockade by non-permeating ones. However, the contribution of the two sites to the overall Ni(2+) effect and its dependence on PDC remain uncertain. Here we compared Ni(2+) action on the wild-type "Ni(2+)-insensitive" Cav3.1w/t channel and Cav3.1Q172H mutant having glutamine (Q) equivalent to H191 of Cav3.2 replaced by histidine. Each channel was expressed in Xenopus oocytes, and Ni(2+) blockade of Ca(2+), Sr(2+), or Ba(2+) currents was assessed by electrophysiology. Inhibition of Cav3.1w/t by Ni(2+) conformed to two sites binding. Ni(2+) binding with high-affinity site (IC50 = 0.03-3 µM depending on PDC) produced maximal inhibition of 20-30% and was voltage-dependent, consistent with its location within the channel's pore. Most of the inhibition (70-80%) was produced by Ni(2+) binding with low-affinity site (IC50 = 240-700 µM). Q172H-mutation mainly affected low-affinity binding (IC50 = 120-160 µM). The IC50 of Ni(2+) binding with both sites in the Cav3.1w/t and Cav3.1Q172H was differentially modulated by PDC, suggesting a varying degree of competition of Ca(2+), Sr(2+), or Ba(2+) with Ni(2+). We conclude that differential Ni(2+)-sensitivity of T-channel subtypes is determined only by H-containing external binding sites, which, in the absence of Ni(2+), may be occupied by PDC, influencing in turn the channel's permeation.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Níquel/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Canais de Cálcio Tipo T/química , Canais de Cálcio Tipo T/genética , Cátions Bivalentes/metabolismo , Células Cultivadas , Feminino , Expressão Gênica , Oócitos/metabolismo , Ligação Proteica , Ratos , Xenopus
8.
J Biol Chem ; 287(5): 2948-62, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22128173

RESUMO

One important mechanism of the regulation of membrane ion channels involves their nonfunctional isoforms generated by alternative splicing. However, knowledge of such isoforms for the members of the transient receptor potential (TRP) superfamily of ion channels remains quite limited. This study focuses on the TRPM8, which functions as a cold receptor in sensory neurons but is also expressed in tissues not exposed to ambient temperatures, as well as in cancer tissues. We report the cloning from prostate cancer cells of new short splice variants of TRPM8, termed short TRPM8α and short TRPM8ß. Our results show that both variants are in a closed configuration with the C-terminal tail of the full-length TRPM8 channel, resulting in stabilization of its closed state and thus reducing both its cold sensitivity and activity. Our findings therefore uncover a new mode of regulation of the TRPM8 channel by its splice variants.


Assuntos
Processamento Alternativo/fisiologia , Canais de Cátion TRPM/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Canais de Cátion TRPM/genética
9.
Biochim Biophys Acta ; 1821(9): 1167-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22613942

RESUMO

N-acylethanolamines (NAE) are endogenously produced lipids playing important roles in a diverse range of physiological and pathological conditions. In the present study, using whole-cell patch clamp technique, we have for the first time investigated the effects of the most abundantly produced NAEs, N-stearoylethanolamine (SEA) and N-oleoylethanolamine (OEA), on electric excitability and membrane currents in cardiomyocytes isolated from endocardial, epicardial, and atrial regions of neonatal rat heart. SEA and OEA (1-10µM) attenuated electrical activity of the myocytes from all regions of the cardiac muscle by hyperpolarizing resting potential, reducing amplitude, and shortening the duration of the action potential. However, the magnitudes of these effects varied significantly depending on the type of cardiac myocyte (i.e., endocardial, epicardial, atrial) with OEA being generally more potent. OEA and to a lesser extent SEA suppressed in a concentration-dependent manner currents through voltage-gated Na(+) (VGSC) and L-type Ca(2+) (VGCC) channels, but induced variable cardiac myocyte type-dependent effects on background K(+) and Cl(-) conductance. The mechanisms of inhibitory action of OEA on cardiac VGSCs and VGCCs involved influence on channels' activation/inactivation gating and partial blockade of ion permeation. OEA also enhanced the viability of cardiac myocytes by reducing necrosis without a significant effect on apoptosis. We conclude that SEA and OEA attenuate the excitability of cardiac myocytes mainly through inhibition of VGSCs and VGCC-mediated Ca(2+) entry. Since NAEs are known to increase during tissue ischemia and infarction, these effects of NAEs may mediate some of their cardioprotective actions during these pathological conditions.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Endocanabinoides/farmacologia , Etanolaminas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ácidos Oleicos/farmacologia , Pericárdio/metabolismo , Ácidos Esteáricos/farmacologia , Animais , Canais de Cálcio Tipo L/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Endocanabinoides/metabolismo , Etanolaminas/metabolismo , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Transporte de Íons/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ácidos Oleicos/metabolismo , Pericárdio/patologia , Ratos , Ácidos Esteáricos/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
10.
J Pharmacol Exp Ther ; 347(2): 398-409, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23965380

RESUMO

The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 µM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 µM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 µM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.


Assuntos
Mentol/farmacologia , Receptores 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Animais , Ligação Competitiva , Relação Dose-Resposta a Droga , Feminino , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica , Ensaio Radioligante , Ratos , Receptores 5-HT3 de Serotonina/genética , Transfecção , Xenopus laevis
11.
Photochem Photobiol ; 99(1): 78-82, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35569087

RESUMO

Caged compounds comprise the group of artificially synthesized, light-sensitive molecules that enable in situ derivation of biologically active constituents capable of affecting cells, tissues and/or biological processes upon exposure to light. Ruthenium-bispyridine (RuBi) complexes are photolyzed by biologically harmless visible light. In the present study, we show that RuBi-caged nicotine can be used as a source of free nicotine to induce proliferation of A549 nonsmall-cell lung cancer (NSCLC) cells by acting on nicotinic acetylcholine receptors expressed in these cells. RuBi-nicotine was photolyzed using LED light source with the spectrum matching RuBi-absorption. Photorelease of free nicotine ([Nic]p/r ) was quantified by high-performance liquid chromatography (HPLC). 5-s-long light exposure of 10 µm of RuBi-nicotine generated 2 µm [Nic]p/r which enhanced A549 cell proliferation similarly to the 2 µm of plain nicotine during 72 h of cell culturing. Both RuBi-nicotine per se and its photolysis byproduct exerted no effect on A549 cells. We conclude that RuBi-nicotine can be a good source of free nicotine for inducing short- and long-term biological effects. Photolysis of RuBi-nicotine is quite effective, and can produce biologically relevant concentrations of nicotine at acceptable concentrations of the source material with the use of simple, inexpensive, and easily accessible light sources.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Nicotina/farmacologia , Células A549 , Proliferação de Células
12.
BBA Adv ; 3: 100069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082258

RESUMO

Tunica dartos smooth muscle (TDSM) lies beneath the scrotal skin, and its contraction leads to scrotum wrinkling upon cooling. However, neither the nature of TDSM cold-sensitivity nor the underlying molecular sensors are well understood. Here we have investigated the role of cold/menthol-sensitive TRPM8 channel in TDSM temperature-dependent contractility. The contraction of isolated male rat TDSM strips was studied by tensiometry. TRPM8 expression was assayed by RT-PCR and fluorescence immunochemistry. Isolated TDSM strips responded to cooling from 33 °C to 20 °C by enhancement of basal tension, and increase of the amplitude and duration of electric field stimulated (EFS) contractions. The effects of cold on basal tension, but not on EFS-contractions, could be 80% inhibited by TRPM8 blockers, capsazepine and BCTC [N-(4­tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide], and could be partially mimicked by menthol. RT-PCR and immunolabeling showed TRPM8 mRNA and protein expression in TDSM cells with protein labelling being predominantly localized to intracellular compartments. Chemical castration of male rats consequent to the treatment with androgen receptor blocker, flutamide, led to the abrogation of cold effects on TDSM basal tension, but not on EFS-contractions, and to the disappearance of TRPM8 protein expression. We conclude that TRPM8 is involved in the maintenance of basal cold-induced TDSM tonus, but not in sympathetic nerve-mediated contractility, by acting as endoplasmic reticulum Ca2+ release channel whose expression in TDSM cells requires the presence of a functional androgen receptor. Thus, TRPM8 plays a crucial role in scrotal thermoregulation which is important for maintaining normal spermatogenesis and male fertility.

13.
J Biol Chem ; 286(11): 9849-55, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21245133

RESUMO

Cold/menthol-activated TRPM8 (transient receptor potential channel melastatin member 8) is primarily expressed in sensory neurons, where it constitutes the principal receptor of environmental innocuous cold. TRPM8 has been shown to be regulated by multiple influences such as phosphorylation, pH, Ca(2+), and lipid messengers. One such messenger is arachidonic acid (AA), which has been shown to inhibit TRPM8 channel activity. However, the physiological pathways mediating the inhibitory effect of AA on TRPM8 still remain unknown. Here, we demonstrate that TRPM8 is regulated via M3 muscarinic acetylcholine receptor-coupled signaling cascade based on the activation of cytosolic phospholipase A2 (cPLA2) and cPLA2-catalyzed derivation of AA. Stimulation of M3 receptors heterologously co-expressed with TRPM8 in HEK-293 cells by nonselective muscarinic agonist, oxotremorine methiodide (Oxo-M), caused inhibition of TRPM8-mediated membrane current, which could be mimicked by AA and antagonized by pharmacological or siRNA-mediated cPLA2 silencing. Our results demonstrate the intracellular functional link between M3 receptor and TRPM8 channel via cPLA2/AA and suggest a novel physiological mechanism of arachidonate-mediated regulation of TRPM8 channel activity through muscarinic receptors. We also summarize the existing TRPM8 regulations and discuss their physiological and pathological significance.


Assuntos
Ácido Araquidônico/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Receptor Muscarínico M3/metabolismo , Canais de Cátion TRPM/metabolismo , Ácido Araquidônico/farmacologia , Inativação Gênica , Fosfolipases A2 do Grupo IV/genética , Células HEK293 , Humanos , Fosforilação/efeitos dos fármacos , Receptor Muscarínico M3/genética , Canais de Cátion TRPM/genética
14.
Cancer Cell ; 1(2): 169-79, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12086875

RESUMO

Antiapoptotic oncoprotein Bcl-2 has extramitochondrial actions due to its localization on the endoplasmic reticulum (ER); however, the specific mechanisms of such actions remain unclear. Here we show that Bcl-2 overexpression in LNCaP prostate cancer epithelial cells results in downregulation of store-operated Ca(2+) current by decreasing the number of functional channels and inhibiting ER Ca(2+) uptake through a reduction in the expression of calreticulin and SERCA2b, two key proteins controlling ER Ca(2+) content. Furthermore, we demonstrate that Ca(2+) store depletion by itself is not sufficient to induce apoptosis in Bcl-2 overexpressing cells, and that sustained Ca(2+) entry via activated store-operated channels (SOCs) is required as well. Our data therefore suggest the pivotal role of SOCs in apoptosis and cancer progression.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Homeostase , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Western Blotting , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Calreticulina , Condutividade Elétrica , Eletrofisiologia , Retículo Endoplasmático/metabolismo , Humanos , Masculino , Técnicas de Patch-Clamp , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ribonucleoproteínas/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Células Tumorais Cultivadas
15.
J Biol Chem ; 285(13): 9410-9419, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20110357

RESUMO

The transient receptor potential channel melastatin member 8 (TRPM8) is expressed in sensory neurons, where it constitutes the main receptor of environmental innocuous cold (10-25 degrees C). Among several types of G protein-coupled receptors expressed in sensory neurons, G(i)-coupled alpha 2A-adrenoreceptor (alpha 2A-AR), is known to be involved in thermoregulation; however, the underlying molecular mechanisms remain poorly understood. Here we demonstrated that stimulation of alpha 2A-AR inhibited TRPM8 in sensory neurons from rat dorsal root ganglia (DRG). In addition, using specific pharmacological and molecular tools combined with patch-clamp current recordings, we found that in heterologously expressed HEK-293 (human embryonic kidney) cells, TRPM8 channel is inhibited by the G(i) protein/adenylate cyclase (AC)/cAMP/protein kinase A (PKA) signaling cascade. We further identified the TRPM8 S9 and T17 as two key PKA phosphorylation sites regulating TRPM8 channel activity. We therefore propose that inhibition of TRPM8 through the alpha 2A-AR signaling cascade could constitute a new mechanism of modulation of thermosensation in both physiological and pathological conditions.


Assuntos
Receptores Adrenérgicos alfa 2/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Gânglios Espinais/metabolismo , Humanos , Modelos Biológicos , Mutagênese , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fosforilação , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Temperatura
16.
J Neurochem ; 112(6): 1454-64, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20050977

RESUMO

The endocannabinoid, anandamide (AEA), modulates the activity of the dopamine transporter (DAT) in heterologous cells and synaptosomal preparations. The cellular mechanisms mediating this effect are unknown. The present studies employed live cell imaging techniques and the fluorescent, high affinity DAT substrate, 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP(+)), to address this issue. AEA addition to EM4 cells expressing yellow fluorescent protein-tagged human DAT (hDAT) produced a concentration-dependent inhibition of ASP(+) accumulation (IC(50): 3.2 +/- 0.8 microM). This effect occurred within 1 min after AEA addition and persisted for 10 min thereafter. Pertussis toxin did not attenuate the effects of AEA suggesting a mechanism independent of G(i)/G(o) coupled receptors. The amidohydrolase inhibitor, phenylmethylsulfonyl fluoride (0.2 mM), failed to alter the AEA-evoked inhibition of ASP(+) accumulation. Methanandamide (10 microM), a metabolically stable analogue of AEA inhibited accumulation but arachidonic acid (10 microM) was without effect suggesting that the effects of AEA are not mediated by its metabolic products. The extent of AEA inhibition of ASP(+) accumulation was not altered in cells pre-treated with 1 microM URB597, a specific and potent fatty acid amide hydrolase inhibitor, and the cyclooxygenase inhibitor, indomethacin (5 microM) Live cell imaging revealed a significant redistribution of hDAT from the membrane to the cytosol in response to AEA treatment (10 microM; 10 min). Similarly biotinylation experiments revealed that the decrease in DAT function was associated with a reduction in hDAT cell surface expression. These results demonstrate that AEA modulates DAT function via a cannabinoid receptor-independent mechanism and suggest that AEA may produces this effect, in part, by modulating DAT trafficking.


Assuntos
Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Receptores de Canabinoides/metabolismo , Alanina/metabolismo , Benzamidas/farmacologia , Cálcio/metabolismo , Carbamatos/farmacologia , Linhagem Celular Transformada , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Relação Dose-Resposta a Droga , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal/métodos , Fluoreto de Fenilmetilsulfonil/farmacologia , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Elastômeros de Silicone/metabolismo , Elastômeros de Silicone/farmacologia , Fatores de Tempo , Transfecção/métodos , Trítio/metabolismo , Tropanos/farmacologia
17.
J Clin Invest ; 117(6): 1647-57, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17510704

RESUMO

In recent years, the transient receptor potential melastatin member 8 (TRPM8) channel has emerged as a promising prognostic marker and putative therapeutic target in prostate cancer (PCa). However, the mechanisms of prostate-specific regulation and functional evolution of TRPM8 during PCa progression remain unclear. Here we show, for the first time to our knowledge, that only secretory mature differentiated human prostate primary epithelial (PrPE) luminal cells expressed functional plasma membrane TRPM8 ((PM)TRPM8) channels. Moreover, PCa epithelial cells obtained from in situ PCa were characterized by a significantly stronger (PM)TRPM8-mediated current than that in normal cells. This (PM)TRPM8 activity was abolished in dedifferentiated PrPE cells that had lost their luminal secretory phenotype. However, we found that in contrast to (PM)TRPM8, endoplasmic reticulum TRPM8 ((ER)TRPM8) retained its function as an ER Ca(2+) release channel, independent of cell differentiation. We hypothesize that the constitutive activity of (ER)TRPM8 may result from the expression of a truncated TRPM8 splice variant. Our study provides insight into the role of TRPM8 in PCa progression and suggests that TRPM8 is a potentially attractive target for therapeutic intervention: specific inhibition of either (ER)TRPM8 or (PM)TRPM8 may be useful, depending on the stage and androgen sensitivity of the targeted PCa.


Assuntos
Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Canais de Cátion TRPM/metabolismo , Processamento Alternativo , Sequência de Bases , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Masculino , Neoplasias da Próstata/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Frações Subcelulares/metabolismo , Canais de Cátion TRPM/genética
18.
Front Cell Neurosci ; 14: 612480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613196

RESUMO

Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel best known for its ability to be gated by the pungent constituent of red chili pepper, capsaicin, and related chemicals from the group of vanilloids as well as by noxious heat. As such, it is mostly expressed in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Its activation is also sensitized by the numerous endogenous inflammatory mediators and second messengers, making it an important determinant of nociceptive signaling. Except for such signaling, though, neuronal TRPV1 activation may influence various organ functions by promoting the release of bioactive neuropeptides from sensory fiber innervation organs. However, TRPV1 is also found outside the sensory nervous system in which its activation and function is not that straightforward. Thus, TRPV1 expression is detected in skeletal muscle; in some types of smooth muscle; in epithelial and immune cells; and in adipocytes, where it can be activated by the combination of dietary vanilloids, endovanilloids, and pro-inflammatory factors while the intracellular calcium signaling that this initiates can regulate processes as diverse as muscle constriction, cell differentiation, and carcinogenesis. The purpose of the present review is to provide a clear-cut distinction between neurogenic TRPV1 effects in various tissues consequent to its activation in sensory nerve endings and non-neurogenic TRPV1 effects due to its expression in cell types other than sensory neurons.

19.
Sci Rep ; 10(1): 19651, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184390

RESUMO

Urinary incontinence of idiopathic nature is a common complication of bladder cancer, yet, the mechanisms underlying changes in bladder contractility associated with cancer are not known. Here by using tensiometry on detrusor smooth muscle (DSM) strips from normal rats and rats with bladder cancer induced by known urothelial carcinogen, N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), we show that bladder cancer is associated with considerable changes in DSM contractility. These changes include: (1) decrease in the amplitude and frequency of spontaneous contractions, consistent with the decline of luminal pressures during filling, and detrusor underactivity; (2) diminution of parasympathetic DSM stimulation mainly at the expense of m-cholinergic excitatory transmission, suggestive of difficulty in bladder emptying and weakening of urine stream; (3) strengthening of TRPV1-dependent afferent limb of micturition reflex and TRPV1-mediated local contractility, promoting urge incontinence; (4) attenuation of stretch-dependent, TRPV4-mediated spontaneous contractility leading to overflow incontinence. These changes are consistent with the symptomatic of bladder dysfunction in bladder cancer patients. Considering that BBN-induced urothelial lesions in rodents largely resemble human urothelial lesions at least in their morphology, our studies establish for the first time underlying reasons for bladder dysfunction in bladder cancer.


Assuntos
Contração Muscular , Canais de Cátion TRPV/metabolismo , Neoplasias da Bexiga Urinária/fisiopatologia , Bexiga Urinária/fisiopatologia , Incontinência Urinária/etiologia , Animais , Butilidroxibutilnitrosamina/toxicidade , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/metabolismo , Incontinência Urinária/metabolismo , Incontinência Urinária/patologia
20.
Eur J Pharmacol ; 860: 172529, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31299187

RESUMO

Parasympathetic regulation of urinary bladder contractions primarily involves acetylcholine release and activation of detrusor smooth muscle (DSM) muscarinic acetylcholine (mACh) receptors. Co-release of ATP and activation of DSM purinergic P2X1-receptors may participate as well in some species. Both types of neuromuscular transmission (NMT) are impaired in diabetes, however, which factors may contribute to such impairment remains poorly understood. Here by using rats with streptozotocin(STZ)-induced type I diabetes (8th week after induction) we show that contribution of atropine-sensitive m-cholinergic component to the contractions of urothelium-denuded DSM strips evoked by electric field stimulation (EFS) greatly increased when diabetic bladders presented overt signs of accompanying cystitis. Modeling of hemorrhagic cystitis alone in control rats by cyclophosphamide injection only modestly increased m-cholinergic component of EFS-contractions. However, exposure of DSM strips from control animals to acetylcholinesterase (AChE) inhibitor, neostigmine (1-10 µM) largely reproduced alterations in EFS contractions observed in diabetic DSM complicated by cystitis. Ellman's assay revealed statistically significant 31% decrease of AChE activities in diabetic vs. control DSM. Changes in purinergic contractility of diabetic DSM were consistent with altered P2X1-receptor desensitization and re-sensitization. They could be mimicked by pharmacological inhibition of ATP-degrading ecto-ATPases with ARL 67156 (50 µM), pointing to compromised extracellular ATP clearance as underlying reason. We conclude that decreased AChE activities associated with diabetes and likely cystitis provide complementary factor to the described in literature altered expression of mACh receptor subtypes linked to diabetes as well as to cystitis to produce dramatic modification of cholinergic NMT.


Assuntos
Acetilcolina/metabolismo , Cistite/complicações , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/fisiopatologia , Contração Muscular , Neurotransmissores/metabolismo , Bexiga Urinária/fisiopatologia , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Espaço Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa