Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(33): 18286-18295, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37551934

RESUMO

Quasi-1D nanoribbons provide a unique route to diversifying the properties of their parent 2D nanomaterial, introducing lateral quantum confinement and an abundance of edge sites. Here, a new family of nanomaterials is opened with the creation of arsenic-phosphorus alloy nanoribbons (AsPNRs). By ionically etching the layered crystal black arsenic-phosphorus using lithium electride followed by dissolution in amidic solvents, solutions of AsPNRs are formed. The ribbons are typically few-layered, several micrometers long with widths tens of nanometers across, and both highly flexible and crystalline. The AsPNRs are highly electrically conducting above 130 K due to their small band gap (ca. 0.035 eV), paramagnetic in nature, and have high hole mobilities, as measured with the first generation of AsP devices, directly highlighting their properties and utility in electronic devices such as near-infrared detectors, quantum computing, and charge carrier layers in solar cells.

2.
Chemistry ; 29(55): e202301232, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37435907

RESUMO

Black phosphorene quantum dots (BPQDs) are most commonly derived from high-cost black phosphorus, while previous syntheses from the low-cost red phosphorus (Pred ) allotrope are highly oxidised. Herein, we present an intrinsically scalable method to produce high quality BPQDs, by first ball-milling Pred to create nanocrystalline Pblack and subsequent reductive etching using lithium electride solvated in liquid ammonia. The resultant ~25 nm BPQDs are crystalline with low oxygen content, and spontaneously soluble as individualized monolayers in tertiary amide solvents, as directly imaged by liquid-phase transmission electron microscopy. This new method presents a scalable route to producing quantities of high quality BPQDs for academic and industrial applications.

3.
ACS Appl Mater Interfaces ; 16(33): 43512-43525, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39110118

RESUMO

Despite their higher capacity compared to common intercalation- and conversion-type anodes, black phosphorus (BP) based anodes suffer from significant capacity fading attributed to the large volume expansion (∼300%) during lithiation. Downsizing BP into nanosheets has been proposed to mitigate this issue, and various methods, particularly mechanical mixing with graphitic materials (BP-C), have been explored to enhance electrochemical performance. However, the understanding of BP-C hybridization is hindered by the lack of studies focusing on fundamental degradation mechanisms within operational battery environments. Here we address this challenge by employing electrochemical atomic force microscopy (EC-AFM) to study the morphological and mechanical evolution of BP-C composite anodes during lithiation. The results reveal that BP-C binding interactions alone are insufficient to withstand the structural reorganization of BP during its alloying reaction with lithium. Furthermore, the study emphasizes the critical role of the solid electrolyte interphase (SEI) and BP-C interface evolution in determining the long-term performance of these composites, shedding light on the disparity in final electrode morphologies between binder-inclusive and binder-free BP-C composites. These findings provide crucial insights into the challenges associated with BP-based anodes and underscore the need for a deeper understanding of the dynamic behavior within operating cells for the development of stable and high-performance battery materials.

4.
Nanoscale ; 16(4): 1742-1750, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38197428

RESUMO

Phosphorene nanoribbons (PNRs) can be synthesised in intrinsically scalable methods from intercalation of black phosphorus (BP), however, the mechanism of ribbonisation remains unclear. Herein, to investigate the point at which nanoribbons form, we decouple the two key synthesis steps: first, the formation of the BP intercalation compound, and second, the dissolution into a polar aprotic solvent. We find that both the lithium intercalant and the negative charge on the phosphorus host framework can be effectively removed by addition of phenyl cyanide to return BP and investigate whether fracturing to ribbons occurred after the first step. Further efforts to exfoliate mechanically with or without solvent reveal that the intercalation step does not form ribbons, indicating that an interaction between the amidic solvent and the intercalated phosphorus compound plays an important role in the formation of nanoribbons.

5.
ACS Nano ; 17(7): 6220-6233, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972510

RESUMO

Numerous layered materials are being recognized as promising candidates for high-performance alkali-ion battery anodes, but black phosphorus (BP) has received particular attention. This is due to its high specific capacity, due to a mixed alkali-ion storage mechanism (intercalation-alloying), and fast alkali-ion transport within its layers. Unfortunately, BP based batteries are also commonly associated with serious irreversible losses and poor cycling stability. This is known to be linked to alloying, but there is little experimental evidence of the morphological, mechanical, or chemical changes that BP undergoes in operational cells and thus little understanding of the factors that must be mitigated to optimize performance. Here the degradation mechanisms of BP alkali-ion battery anodes are revealed through operando electrochemical atomic force microscopy (EC-AFM) and ex situ spectroscopy. Among other phenomena, BP is observed to wrinkle and deform during intercalation but suffers from complete structural breakdown upon alloying. The solid electrolyte interphase (SEI) is also found to be unstable, nucleating at defects before spreading across the basal planes but then disintegrating upon desodiation, even above alloying potentials. By directly linking these localized phenomena with the whole-cell performance, we can now engineer stabilizing protocols for next-generation high-capacity alkali-ion batteries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa