Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 316(6): E1105-E1117, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30912961

RESUMO

The regulation of nutrient homeostasis, i.e., the ability to transition between fasted and fed states, is fundamental in maintaining health. Since food is typically consumed over limited (anabolic) periods, dietary components must be processed and stored to counterbalance the catabolic stress that occurs between meals. Herein, we contrast tissue- and pathway-specific metabolic activity in fasted and fed states. We demonstrate that knowledge of biochemical kinetics that is obtained from opposite ends of the energetic spectrum can allow mechanism-based differentiation of healthy and disease phenotypes. Rat models of type 1 and type 2 diabetes serve as case studies for probing spatial and temporal patterns of metabolic activity via [2H]water labeling. Experimental designs that capture integrative whole body metabolism, including meal-induced substrate partitioning, can support an array of research surrounding metabolic disease; the relative simplicity of the approach that is discussed here should enable routine applications in preclinical models.


Assuntos
Aminoácidos/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Jejum/metabolismo , Ácidos Graxos/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Período Pós-Prandial , Animais , Óxido de Deutério , Modelos Animais de Doenças , Glicogênio/metabolismo , Cinética , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Redes e Vias Metabólicas , Metabolômica , Ratos , Ratos Wistar , Ratos Zucker , Análise Espaço-Temporal
2.
Artigo em Inglês | MEDLINE | ID: mdl-15734150

RESUMO

Liquid formulations of monoclonal antibodies (MAbs) typically undergo fragmentation near the papain cleavage site in the hinge region, resulting in Fab and Fab+Fc forms. The purpose of this study was to investigate whether this fragmentation is due to proteases. Four closely-related MAbs were exchanged into a pH 5.2 acetate buffer with NaCl and stored at -20 degrees C, 5 degrees C, 30 degrees C, or 40 degrees C for 1 month. Fragmentation generated size-exclusion chromatography (SEC) peak fractions that were analyzed by electrospray mass spectrometry to identify the cleavage sites. The effects of protein inhibitors or host cell proteins on fragmentation were also studied. The extent of fragmentation was equivalent for all four antibodies, occurring in the heavy chain hinge region Ser-Cys-Asp-Lys-Thr-His-Thr sequence. The fragment due to cleavage of the Asp-Lys bond showed two forms that differ by 18 Da. A synthetic peptide with the hinge region sequence terminating with Asp did not show fragmentation or the loss of 18 Da after incubation. Protease inhibitors did not affect rates of cleavage or modify sites of fragmentation. Degradation was not affected by host cell protein content. Fragmentation appears to be a kinetic process that is not caused by low levels of host cell proteases.


Assuntos
Anticorpos Monoclonais/química , Fragmentos de Imunoglobulinas/química , Sequência de Aminoácidos , Cromatografia em Gel , Estabilidade de Medicamentos , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/química , Fragmentos de Imunoglobulinas/isolamento & purificação , Cinética , Inibidores de Proteases/farmacologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa