Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Genet Metab ; 138(2): 107508, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709532

RESUMO

GM1 gangliosidosis is a rare lysosomal storage disorder affecting multiple organ systems, primarily the central nervous system, and is caused by functional deficiency of ß-galactosidase (GLB1). Using CRISPR/Cas9 genome editing, we generated a mouse model to evaluate characteristics of the disease in comparison to GM1 gangliosidosis patients. Our Glb1-/- mice contain small deletions in exons 2 and 6, producing a null allele. Longevity is approximately 50 weeks and studies demonstrated that female Glb1-/- mice die six weeks earlier than male Glb1-/- mice. Gait analyses showed progressive abnormalities including abnormal foot placement, decreased stride length and increased stance width, comparable with what is observed in type II GM1 gangliosidosis patients. Furthermore, Glb1-/- mice show loss of motor skills by 20 weeks assessed by adhesive dot, hanging wire, and inverted grid tests, and deterioration of motor coordination by 32 weeks of age when evaluated by rotarod testing. Brain MRI showed progressive cerebellar atrophy in Glb1-/- mice as seen in some patients. In addition, Glb1-/- mice also show significantly increased levels of a novel pentasaccharide biomarker in urine and plasma which we also observed in GM1 gangliosidosis patients. Glb1-/- mice also exhibit accumulation of glycosphingolipids in the brain with increases in GM1 and GA1 beginning by 8 weeks. Surprisingly, despite being a null variant, this Glb1-/- mouse most closely models the less severe type II disease and will guide the development of new therapies for patients with the disorder.


Assuntos
Gangliosidose GM1 , Doenças por Armazenamento dos Lisossomos , Masculino , Feminino , Animais , Camundongos , Gangliosidose GM1/genética , Camundongos Knockout , beta-Galactosidase/genética , Doenças por Armazenamento dos Lisossomos/genética , Éxons
2.
Nature ; 539(7628): 294-298, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27806377

RESUMO

Dietary fat promotes pathological insulin resistance through chronic inflammation. The inactivation of inflammatory proteins produced by macrophages improves diet-induced diabetes, but how nutrient-dense diets induce diabetes is unknown. Membrane lipids affect the innate immune response, which requires domains that influence high-fat-diet-induced chronic inflammation and alter cell function based on phospholipid composition. Endogenous fatty acid synthesis, mediated by fatty acid synthase (FAS), affects membrane composition. Here we show that macrophage FAS is indispensable for diet-induced inflammation. Deleting Fasn in macrophages prevents diet-induced insulin resistance, recruitment of macrophages to adipose tissue and chronic inflammation in mice. We found that FAS deficiency alters membrane order and composition, impairing the retention of plasma membrane cholesterol and disrupting Rho GTPase trafficking-a process required for cell adhesion, migration and activation. Expression of a constitutively active Rho GTPase, however, restored inflammatory signalling. Exogenous palmitate was partitioned to different pools from endogenous lipids and did not rescue inflammatory signalling. However, exogenous cholesterol, as well as other planar sterols, did rescue signalling, with cholesterol restoring FAS-induced perturbations in membrane order. Our results show that the production of endogenous fat in macrophages is necessary for the development of exogenous-fat-induced insulin resistance through the creation of a receptive environment at the plasma membrane for the assembly of cholesterol-dependent signalling networks.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Ácidos Graxos/biossíntese , Inflamação/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Adesão Celular , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Movimento Celular , Colesterol/metabolismo , Colesterol/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácido Graxo Sintases/deficiência , Ácido Graxo Sintases/metabolismo , Inflamação/enzimologia , Inflamação/etiologia , Inflamação/patologia , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/citologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Masculino , Camundongos , Ácido Palmítico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo
3.
Gene Ther ; 27(5): 226-236, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31896760

RESUMO

The GM2-gangliosidoses are neurological diseases causing premature death, thus developing effective treatment protocols is urgent. GM2-gangliosidoses result from deficiency of a lysosomal enzyme ß-hexosaminidase (Hex) and subsequent accumulation of GM2 gangliosides. Genetic changes in HEXA, encoding the Hex α subunit, or HEXB, encoding the Hex ß subunit, causes Tay-Sachs disease and Sandhoff disease, respectively. Previous studies have showed that a modified human Hex µ subunit (HEXM) can treat both Tay-Sachs and Sandhoff diseases by forming a homodimer to degrade GM2 gangliosides. To this end, we applied this HEXM subunit in our PS813 gene editing system to treat neonatal Sandhoff mice. Through AAV delivery of the CRISPR system, a promoterless HEXM cDNA will be integrated into the albumin safe harbor locus, and lysosomal enzyme will be expressed and secreted from edited hepatocytes. 4 months after the i.v. of AAV vectors, plasma MUGS and MUG activities reached up to 144- and 17-fold of wild-type levels (n = 10, p < 0.0001), respectively. More importantly, MUGS and MUG activities in the brain also increased significantly compared with untreated Sandhoff mice (p < 0.001). Further, HPLC-MS/MS analysis showed that GM2 gangliosides in multiple tissues, except the brain, of treated mice were reduced to normal levels. Rotarod analysis showed that coordination and motor memory of treated mice were improved (p < 0.05). Histological analysis of H&E stained tissues showed reduced cellular vacuolation in the brain and liver of treated Sandhoff mice. These results demonstrate the potential of developing a treatment of in vivo genome editing for Tay-Sachs and Sandhoff patients.


Assuntos
Doença de Sandhoff , Doença de Tay-Sachs , Animais , Modelos Animais de Doenças , Edição de Genes , Humanos , Camundongos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Espectrometria de Massas em Tandem , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia , beta-N-Acetil-Hexosaminidases/genética
4.
Mol Genet Metab ; 131(4): 405-417, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33257258

RESUMO

Niemann-Pick disease type C (NPC) is a neurodegenerative disease in which mutation of NPC1 or NPC2 gene leads to lysosomal accumulation of unesterified cholesterol and sphingolipids. Diagnosis of NPC disease is challenging due to non-specific early symptoms. Biomarker and genetic tests are used as first-line diagnostic tests for NPC. In this study, we developed a plasma test based on N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl)glycine (TCG) that was markedly increased in the plasma of human NPC1 subjects. The test showed sensitivity of 0.9945 and specificity of 0.9982 to differentiate individuals with NPC1 from NPC1 carriers and controls. Compared to other commonly used biomarkers, cholestane-3ß,5α,6ß-triol (C-triol) and N-palmitoyl-O-phosphocholine (PPCS, also referred to as lysoSM-509), TCG was equally sensitive for identifying NPC1 but more specific. Unlike C-triol and PPCS, TCG showed excellent stability and no spurious generation of marker in the sample preparation or aging of samples. TCG was also elevated in lysosomal acid lipase deficiency (LALD) and acid sphingomyelinase deficiency (ASMD). Plasma TCG was significantly reduced after intravenous (IV) 2-hydroxypropyl-ß-cyclodextrin (HPßCD) treatment. These results demonstrate that plasma TCG was superior to C-triol and PPCS as NPC1 diagnostic biomarker and was able to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Assuntos
Glicina/sangue , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/genética , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Ácidos e Sais Biliares/sangue , Biomarcadores/sangue , Feminino , Glicina/análogos & derivados , Glicina/isolamento & purificação , Humanos , Masculino , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/patologia , Espectrometria de Massas em Tandem , Proteínas de Transporte Vesicular/genética
5.
Mol Genet Metab ; 129(4): 292-302, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033912

RESUMO

Niemann-Pick type C (NPC) disease is a rare lysosomal storage disorder caused by mutations in either the NPC1 or the NPC2 gene. A new class of lipids, N-acyl-O-phosphocholineserines were recently identified as NPC biomarkers. The most abundant species in this class of lipid, N-palmitoyl-O-phosphocholineserine (PPCS), was evaluated for diagnosis of NPC disease and treatment efficacy assessment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) in NPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated to measure PPCS in human plasma and cerebrospinal fluid (CSF). A cutoff of 248 ng/mL in plasma provided a sensitivity of 100.0% and specificity of 96.6% in identifying NPC1 patients from control and NPC1 carrier subjects. PPCS was significantly elevated in CSF from NPC1 patients, and CSF PPCS levels were significantly correlated with NPC neurological disease severity scores. Plasma and CSF PPCS did not change significantly in response to intrathetical (IT) HPßCD treatment. In an intravenous (IV) HPßCD trial, plasma PPCS in all patients was significantly reduced. These results demonstrate that plasma PPCS was able to diagnose NPC1 patients with high sensitivity and specificity, and to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Fosforilcolina/sangue , Fosforilcolina/líquido cefalorraquidiano , Adolescente , Adulto , Idoso , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Gatos , Criança , Pré-Escolar , Cromatografia Líquida , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem , Resultado do Tratamento , Adulto Jovem
6.
J Lipid Res ; 60(8): 1410-1424, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31201291

RESUMO

Niemann-Pick disease type C1 (NPC1) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, there is an urgency to improve diagnostics and monitor therapeutic efficacy with biomarkers. In this study, we sought to define the structure of an unknown lipid biomarker for NPC1 with [M + H]+ ion at m/z 509.3351, previously designated as lysoSM-509. The structure of N-palmitoyl-O-phosphocholineserine (PPCS) was proposed for the lipid biomarker based on the results from mass spectrometric analyses and chemical derivatizations. As no commercial standard is available, authentic PPCS was chemically synthesized, and the structure was confirmed by comparison of endogenous and synthetic compounds as well as their derivatives using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PPCS is the most abundant species among N-acyl-O-phosphocholineserines (APCS), a class of lipids that have not been previously detected in biological samples. Further analysis demonstrated that all APCS species with acyl groups ranging from C14 to C24 were elevated in NPC1 plasma. PPCS is also elevated in both central and peripheral tissues of the NPC1 cat model. Identification of APCS structures provide an opportunity for broader exploration of the roles of these novel lipids in NPC1 disease pathology and diagnosis.


Assuntos
Doença de Niemann-Pick Tipo C/metabolismo , Fosforilcolina/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Doença de Niemann-Pick Tipo C/genética
7.
Mol Genet Metab ; 126(2): 183-187, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30172462

RESUMO

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is a rare, neurodegenerative cholesterol storage disorder. Diagnostic delay of >5 years is common due to the rarity of the disease and non-specific early symptoms. To improve diagnosis and facilitate early intervention, we previously developed a newborn screening assay based on newly identified plasma bile acid biomarkers. Because the newborn screen had been validated using dried blood spots (DBS) from already diagnosed NPC1 patients, an unanswered question was whether the screen would be able to detect individuals with NPC1 at birth. METHODS: To address this critical question, we obtained the newborn DBS for already diagnosed NPC1 subjects (n = 15) and carriers (n = 3) residing in California, New York, and Michigan states that archive residual DBS in biorepositories. For each of the DBS, we obtained two neighbor controls - DBS from patients born on the same day and in the same hospital as the NPC1 patients and carriers. 3ß,5α,6ß-trihydroxycholanic acid (bile acid A) and trihydroxycholanic acid glycine conjugate (bile acid B) were measured in the DBS using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. RESULTS: Bile acid B, the more specific biomarker for which the fully validated DBS assay was developed, was detected in 8/15 NPC1 patients, and elevated above the cut-off in 2/15 patients (the two samples with the shortest storage time). Bile acid B was detected in 2/2, 6/10, and 0/7 NPC1 samples that have been stored for <10.5 years, 13-20 years, and > 20 years, respectively, indicating that the glycine conjugate is detectable in DBS but may have reduced long-term stability compared with bile acid A, the precursor trihydroxycholanic acid, which was elevated in 15/15 NPC1 subjects, but not in carriers and controls. CONCLUSIONS: These results demonstrate that newborn screening for NPC1 disease is feasible using bile acid biomarkers.


Assuntos
Ácidos e Sais Biliares/análise , Teste em Amostras de Sangue Seco , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/diagnóstico , Bancos de Espécimes Biológicos , Biomarcadores/sangue , California , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Humanos , Recém-Nascido , Masculino , Michigan , Triagem Neonatal , New York , Estudos Retrospectivos , Espectrometria de Massas em Tandem
8.
Mol Genet Metab ; 126(2): 139-150, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528226

RESUMO

Deficiencies in the lysosomal hydrolase ß-galactosidase (ß-gal) lead to two distinct diseases: the skeletal disease Morquio syndrome type B, and the neurodegenerative disease GM1-gangliosidosis. Utilizing CRISPR-Cas9 genome editing, the mouse ß-gal encoding gene, Glb1, was targeted to generate both models of ß-gal deficiency in a single experiment. For Morquio syndrome type B, the common human missense mutation W273L (position 274 in mice) was introduced into the Glb1 gene (Glb1W274L), while for GM1-gangliosidosis, a 20 bp mutation was generated to remove the catalytic nucleophile of ß-gal (ß-gal-/-). Glb1W274L mice showed a significant reduction in ß-gal enzyme activity (8.4-13.3% of wildtype), but displayed no marked phenotype after one year. In contrast, ß-gal-/- mice were devoid of ß-gal enzyme activity (≤1% of wildtype), resulting in ganglioside accumulation and severe cellular vacuolation throughout the central nervous system (CNS). ß-gal-/- mice also displayed severe neuromotor and neurocognitive dysfunction, and as the disease progressed, the mice became emaciated and succumbed to the disease by 10 months of age. Overall, in addition to generating a novel murine model that phenotypically resembles GM1-gangliosidosis, the first model of ß-galactosidase deficiency with residual enzyme activity has been developed.


Assuntos
Modelos Animais de Doenças , Gangliosidose GM1/patologia , Mucopolissacaridose IV/patologia , beta-Galactosidase/metabolismo , Animais , Sistemas CRISPR-Cas , Feminino , Fluorometria , Gangliosidose GM1/genética , Edição de Genes , Testes de Estado Mental e Demência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose IV/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo , beta-Galactosidase/genética
9.
Lancet ; 390(10104): 1758-1768, 2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-28803710

RESUMO

BACKGROUND: Niemann-Pick disease, type C1 (NPC1) is a lysosomal storage disorder characterised by progressive neurodegeneration. In preclinical testing, 2-hydroxypropyl-ß-cyclodextrins (HPßCD) significantly delayed cerebellar Purkinje cell loss, slowed progression of neurological manifestations, and increased lifespan in mouse and cat models of NPC1. The aim of this study was to assess the safety and efficacy of lumbar intrathecal HPßCD. METHODS: In this open-label, dose-escalation phase 1-2a study, we gave monthly intrathecal HPßCD to participants with NPC1 with neurological manifestation at the National Institutes of Health (NIH), Bethesda, MD, USA. To explore the potential effect of 2-week dosing, three additional participants were enrolled in a parallel study at Rush University Medical Center (RUMC), Chicago, IL, USA. Participants from the NIH were non-randomly, sequentially assigned in cohorts of three to receive monthly initial intrathecal HPßCD at doses of 50, 200, 300, or 400 mg per month. A fifth cohort of two participants received initial doses of 900 mg. Participants from RUMC initially received 200 or 400 mg every 2 weeks. The dose was escalated based on tolerance or safety data from higher dose cohorts. Serum and CSF 24(S)-hydroxycholesterol (24[S]-HC), which serves as a biomarker of target engagement, and CSF protein biomarkers were evaluated. NPC Neurological Severity Scores (NNSS) were used to compare disease progression in HPßCD-treated participants relative to a historical comparison cohort of 21 NPC1 participants of similar age range. FINDINGS: Between Sept 21, 2013, and Jan 19, 2015, 32 participants with NPC1 were assessed for eligibility at the National Institutes of Health. 18 patients were excluded due to inclusion criteria not met (six patients), declined to participate (three patients), pursued independent expanded access and obtained the drug outside of the study (three patients), enrolled in the RUMC cohort (one patient), or too late for the trial enrolment (five patients). 14 patients were enrolled and sequentially assigned to receive intrathecal HPßCD at a starting dose of 50 mg per month (three patients), 200 mg per month (three patients), 300 mg per month (three patients), 400 mg per month (three patients), or 900 mg per month (two patients). During the first year, two patients had treatment interrupted for one dose, based on grade 1 ototoxicity. All 14 patients were assessed at 12 months. Between 12 and 18 months, one participant had treatment interrupted at 17 months due to hepatocellular carcinoma, one patient had dose interruption for 2 doses based on caregiver hardship and one patient had treatment interrupted for 1 dose for mastoiditis. 11 patients were assessed at 18 months. Between Dec 11, 2013, and June 25, 2014, three participants were assessed for eligibility and enrolled at RUMC, and were assigned to receive intrathecal HPßCD at a starting dose of 200 mg every 2 weeks (two patients), or 400 mg every two weeks (one patient). There were no dropouts in this group and all 3 patients were assessed at 18 months. Biomarker studies were consistent with improved neuronal cholesterol homoeostasis and decreased neuronal pathology. Post-drug plasma 24(S)-HC area under the curve (AUC8-72) values, an indicator of neuronal cholesterol homoeostasis, were significantly higher than post-saline plasma 24(S)-HC AUC8-72 after doses of 900 mg (p=0·0063) and 1200 mg (p=0·0037). CSF 24(S)-HC concentrations in three participants given either 600 or 900 mg of HPßCD were increased about two fold (p=0·0032) after drug administration. No drug-related serious adverse events were observed. Mid-frequency to high-frequency hearing loss, an expected adverse event, was documented in all participants. When managed with hearing aids, this did not have an appreciable effect on daily communication. The NNSS for the 14 participants treated monthly increased at a rate of 1·22, SEM 0·34 points per year compared with 2·92, SEM 0·27 points per year (p=0·0002) for the 21 patient comparison group. Decreased progression was observed for NNSS domains of ambulation (p=0·0622), cognition (p=0·0040) and speech (p=0·0423). INTERPRETATION: Patients with NPC1 treated with intrathecal HPßCD had slowed disease progression with an acceptable safety profile. These data support the initiation of a multinational, randomised, controlled trial of intrathecal HPßCD. FUNDING: National Institutes of Health, Dana's Angels Research Trust, Ara Parseghian Medical Research Foundation, Hope for Haley, Samantha's Search for the Cure Foundation, National Niemann-Pick Disease Foundation, Support of Accelerated Research for NPC Disease, Vtesse, Janssen Research and Development, a Johnson & Johnson company, and Johnson & Johnson.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Progressão da Doença , Doença de Niemann-Pick Tipo C/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/efeitos adversos , Adolescente , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Calbindinas/líquido cefalorraquidiano , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Proteína 3 Ligante de Ácido Graxo/líquido cefalorraquidiano , Feminino , Perda Auditiva de Alta Frequência/induzido quimicamente , Humanos , Hidroxicolesteróis/sangue , Hidroxicolesteróis/líquido cefalorraquidiano , Injeções Espinhais , Masculino , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/líquido cefalorraquidiano , Doenças Raras/tratamento farmacológico , Adulto Jovem
10.
Biomed Chromatogr ; 32(7): e4235, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29516569

RESUMO

Deficiencies of galactosylceramidase and glucocerebrosidase result in the accumulation of galactosylsphingosine (GalSph) and glucosylsphingosine (GluSph) in Krabbe and Gaucher diseases, respectively. GalSph and GluSph are useful biomarkers for both diagnosis and monitoring of treatment effects. We have developed and validated a sensitive, accurate, high-throughput assay for simultaneous determination of the concentration of GalSph and GluSph in mouse serum. GalSph and GluSph and their deuterated internal standards were extracted by protein precipitation in quantitative recoveries, baseline separated by hydrophilic interaction chromatography and detected by positive-ion electrospray mass spectrometry in multiple reaction monitoring mode. Total run time was 7 min. The lower limit of quantification was 0.2 ng/mL for both GalSph and GluSph. Sample stability, assay precision and accuracy, and method robustness were demonstrated. This method has been successfully applied to measurement of these lipid biomarkers in a natural history study in twitcher (Krabbe) mice.


Assuntos
Biomarcadores/sangue , Cromatografia Líquida/métodos , Doença de Gaucher/sangue , Psicosina/análogos & derivados , Psicosina/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Modelos Animais de Doenças , Doença de Gaucher/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Lineares , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
J Neurosci ; 36(28): 7441-52, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27413154

RESUMO

UNLABELLED: Among the known genetic risk factors for Parkinson disease, mutations in GBA1, the gene responsible for the lysosomal disorder Gaucher disease, are the most common. This genetic link has directed attention to the role of the lysosome in the pathogenesis of parkinsonism. To study how glucocerebrosidase impacts parkinsonism and to evaluate new therapeutics, we generated induced human pluripotent stem cells from four patients with Type 1 (non-neuronopathic) Gaucher disease, two with and two without parkinsonism, and one patient with Type 2 (acute neuronopathic) Gaucher disease, and differentiated them into macrophages and dopaminergic neurons. These cells exhibited decreased glucocerebrosidase activity and stored the glycolipid substrates glucosylceramide and glucosylsphingosine, demonstrating their similarity to patients with Gaucher disease. Dopaminergic neurons from patients with Type 2 and Type 1 Gaucher disease with parkinsonism had reduced dopamine storage and dopamine transporter reuptake. Levels of α-synuclein, a protein present as aggregates in Parkinson disease and related synucleinopathies, were selectively elevated in neurons from the patients with parkinsonism or Type 2 Gaucher disease. The cells were then treated with NCGC607, a small-molecule noninhibitory chaperone of glucocerebrosidase identified by high-throughput screening and medicinal chemistry structure optimization. This compound successfully chaperoned the mutant enzyme, restored glucocerebrosidase activity and protein levels, and reduced glycolipid storage in both iPSC-derived macrophages and dopaminergic neurons, indicating its potential for treating neuronopathic Gaucher disease. In addition, NCGC607 reduced α-synuclein levels in dopaminergic neurons from the patients with parkinsonism, suggesting that noninhibitory small-molecule chaperones of glucocerebrosidase may prove useful for the treatment of Parkinson disease. SIGNIFICANCE STATEMENT: Because GBA1 mutations are the most common genetic risk factor for Parkinson disease, dopaminergic neurons were generated from iPSC lines derived from patients with Gaucher disease with and without parkinsonism. These cells exhibit deficient enzymatic activity, reduced lysosomal glucocerebrosidase levels, and storage of glucosylceramide and glucosylsphingosine. Lines generated from the patients with parkinsonism demonstrated elevated levels of α-synuclein. To reverse the observed phenotype, the neurons were treated with a novel noninhibitory glucocerebrosidase chaperone, which successfully restored glucocerebrosidase activity and protein levels and reduced glycolipid storage. In addition, the small-molecule chaperone reduced α-synuclein levels in dopaminergic neurons, indicating that chaperoning glucocerebrosidase to the lysosome may provide a novel therapeutic strategy for both Parkinson disease and neuronopathic forms of Gaucher disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Doença de Gaucher/patologia , Glucosilceramidas/antagonistas & inibidores , Glicolipídeos/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Transtornos Parkinsonianos/patologia , alfa-Sinucleína/metabolismo , Acetanilidas/farmacologia , Benzamidas/farmacologia , Catecolaminas/metabolismo , Diferenciação Celular/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Glucosilceramidase , Glucosilceramidas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutação/genética , Técnicas de Patch-Clamp , beta-Glucosidase/genética
12.
J Neurosci ; 35(21): 8091-106, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019327

RESUMO

Niemann-Pick Type C1 (NPC1) disease is a rare neurovisceral, cholesterol-sphingolipid lysosomal storage disorder characterized by ataxia, motor impairment, progressive intellectual decline, and dementia. The most prevalent mutation, NPC1(I1061T), encodes a misfolded protein with a reduced half-life caused by ER-associated degradation. Therapies directed at stabilization of the mutant NPC1 protein reduce cholesterol storage in fibroblasts but have not been tested in vivo because of lack of a suitable animal model. Whereas the prominent features of human NPC1 disease are replicated in the null Npc1(-/-) mouse, this model is not amenable to examining proteostatic therapies. The objective of the present study was to develop an NPC1 I1061T knock-in mouse in which to test proteostatic therapies. Compared with the Npc1(-/-) mouse, this Npc1(tm(I1061T)Dso) model displays a less severe, delayed form of NPC1 disease with respect to weight loss, decreased motor coordination, Purkinje cell death, lipid storage, and premature death. The murine NPC1(I1061T) protein has a reduced half-life in vivo, consistent with protein misfolding and rapid ER-associated degradation, and can be stabilized by histone deacetylase inhibition. This novel mouse model faithfully recapitulates human NPC1 disease and provides a powerful tool for preclinical evaluation of therapies targeting NPC1 protein variants with compromised stability.


Assuntos
Alelos , Proteínas de Transporte/genética , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Animais , Células Cultivadas , Feminino , Técnicas de Introdução de Genes/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína C1 de Niemann-Pick , Prevalência
13.
Hum Mol Genet ; 23(22): 6022-33, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24964810

RESUMO

Niemann-Pick C1 (NPC1) disease is a rare, neurodegenerative lysosomal cholesterol storage disorder, typified by progressive cognitive and motor function impairment. Affected individuals usually succumb to the disease in adolescence. 2-Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) has emerged as a promising intervention that reduces lipid storage and prolongs survival in NPC1 disease animal models. A barrier to the development of HP-ß-CD and other treatments for NPC disease has been the lack of validated biochemical measures to evaluate efficacy. Here we explored whether cholesterol homeostatic responses resulting from HP-ß-CD-mediated redistribution of sequestered lysosomal cholesterol could provide biomarkers to monitor treatment. Upon direct CNS delivery of HP-ß-CD, we found increases in plasma 24(S)-HC in two independent NPC1 disease animal models, findings that were confirmed in human NPC1 subjects receiving HP-ß-CD. Since circulating 24(S)-HC is almost exclusively CNS-derived, the increase in plasma 24(S)-HC provides a peripheral, non-invasive measure of the CNS effect of HP-ß-CD. Our findings suggest that plasma 24(S)-HC, along with the other cholesterol-derived markers examined in this study, can serve as biomarkers that will accelerate development of therapeutics for NPC1 disease.


Assuntos
Colesterol/sangue , Doença de Niemann-Pick Tipo C/tratamento farmacológico , beta-Ciclodextrinas/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina , Adolescente , Animais , Biomarcadores/sangue , Criança , Modelos Animais de Doenças , Monitoramento de Medicamentos/métodos , Feminino , Homeostase , Humanos , Masculino , Camundongos Endogâmicos BALB C , Doença de Niemann-Pick Tipo C/sangue , Adulto Jovem
14.
Blood ; 123(1): 51-60, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24235134

RESUMO

Niemann-Pick type C (NPC) is a neurodegenerative lysosomal storage disorder caused by defects in the lysosomal proteins NPC1 or NPC2. NPC cells are characterized by reduced lysosomal calcium levels and impaired sphingosine transport from lysosomes. Natural killer (NK) cells kill virally infected/transformed cells via degranulation of lysosome-related organelles. Their trafficking from lymphoid tissues into the circulation is dependent on sphingosine-1-phosphate (S1P) gradients, sensed by S1P receptor 5 (S1P5). We hypothesized that NK-cell function and trafficking could be affected in NPC disease due to the combined effects of the lysosomal calcium defect and sphingosine storage. In an NPC1 mouse model, we found the frequency of NK cells was altered and phenocopied S1P5-deficient mice, consistent with defects in S1P levels. NK cells from NPC1 mice also had a defect in cytotoxicity due to a failure in degranulation of cytotoxic granules, which was associated with reduced lysosomal calcium levels. Affected NPC1 patients and NPC1 heterozygote carriers had reduced NK-cell numbers in their blood and showed similar phenotypic and developmental changes to those observed in the NPC1 mouse. These findings highlight the effects of lysosomal storage on the peripheral immune system.


Assuntos
Células Matadoras Naturais/citologia , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/imunologia , Adolescente , Adulto , Idoso , Animais , Cálcio/metabolismo , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Leucócitos Mononucleares/citologia , Lisofosfolipídeos/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteína C1 de Niemann-Pick , Fenótipo , Proteínas/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Adulto Jovem
15.
J Lipid Res ; 56(6): 1222-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25866316

RESUMO

24(S)-hydroxycholesterol [24(S)-HC] is a cholesterol metabolite that is formed almost exclusively in the brain. The concentrations of 24(S)-HC in cerebrospinal fluid (CSF) and/or plasma might be a sensitive marker of altered cholesterol metabolism in the CNS. A highly sensitive 2D-LC-MS/MS assay was developed for the quantification of 24(S)-HC in human plasma and CSF. In the development of an assay for 24(S)-HC in CSF, significant nonspecific binding of 24(S)-HC was observed and resolved with the addition of 2.5% 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) into CSF samples. The sample preparation consists of liquid-liquid extraction with methyl-tert-butyl ether and derivatization with nicotinic acid. Good linearity was observed in a range from 1 to 200 ng/ml and from 0.025 to 5 ng/ml, for plasma and CSF, respectively. Acceptable precision and accuracy were obtained for concentrations over the calibration curve ranges. Stability of 24(S)-HC was reported under a variety of storage conditions. This method has been successfully applied to support a National Institutes of Health-sponsored clinical trial of HP-ß-CD in Niemann-Pick type C1 patients, in which 24(S)-HC is used as a pharmacodynamic biomarker.


Assuntos
Cromatografia Líquida , Hidroxicolesteróis , Doença de Niemann-Pick Tipo C , Espectrometria de Massas em Tandem , 2-Hidroxipropil-beta-Ciclodextrina , Sistema Nervoso Central/metabolismo , Colesterol/metabolismo , Humanos , Hidroxicolesteróis/sangue , Hidroxicolesteróis/líquido cefalorraquidiano , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/líquido cefalorraquidiano , Estados Unidos , beta-Ciclodextrinas/farmacologia
16.
Hum Mol Genet ; 22(17): 3508-23, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23666527

RESUMO

Niemann-Pick disease, type C1 (NPC1), which arises from a mutation in the NPC1 gene, is characterized by abnormal cellular storage and transport of cholesterol and other lipids that leads to hepatic disease and progressive neurological impairment. Oxidative stress has been hypothesized to contribute to the NPC1 disease pathological cascade. To determine whether treatments reducing oxidative stress could alleviate NPC1 disease phenotypes, the in vivo effects of the antioxidant N-acetylcysteine (NAC) on two mouse models for NPC1 disease were studied. NAC was able to partially suppress phenotypes in both antisense-induced (NPC1ASO) and germline (Npc1-/-) knockout genetic mouse models, confirming the presence of an oxidative stress-related mechanism in progression of NPC1 phenotypes and suggesting NAC as a potential molecule for treatment. Gene expression analyses of NAC-treated NPC1ASO mice suggested NAC affects pathways distinct from those initially altered by Npc1 knockdown, data consistent with NAC achieving partial disease phenotype suppression. In a therapeutic trial of short-term NAC administration to NPC1 patients, no significant effects on oxidative stress in these patients were identified other than moderate improvement of the fraction of reduced CoQ10, suggesting limited efficacy of NAC monotherapy. However, the mouse model data suggest that the distinct antioxidant effects of NAC could provide potential treatment of NPC1 disease, possibly in concert with other therapeutic molecules at earlier stages of disease progression. These data also validated the NPC1ASO mouse as an efficient model for candidate NPC1 drug screening, and demonstrated similarities in hepatic phenotypes and genome-wide transcript expression patterns between the NPC1ASO and Npc1-/- models.


Assuntos
Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/administração & dosagem , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Estudos Cross-Over , Modelos Animais de Doenças , Método Duplo-Cego , Feminino , Expressão Gênica , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/fisiopatologia , Estresse Oxidativo/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Adulto Jovem
17.
Mol Genet Metab ; 116(1-2): 75-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26189084

RESUMO

Niemann-Pick C, type 1 (NPC1) is a progressive autosomal recessive neurologic disease caused by defective intracellular cholesterol and lipid trafficking. There are currently no United States Food and Drug Administration approved treatments for NPC1. We undertook a study evaluating the safety, efficacy, and biomarker response of intrathecal 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) in a 12-year old subject with mildly symptomatic NPC. The subject received 200mg intrathecal HP-ß-CD administered biweekly via lumbar puncture. To date the subject has received 27 intrathecal HP-ß-CD injections. Intrathecal HP-ß-CD has been generally safe and well tolerated in this subject. There has been an improvement in vertical gaze. The subject has developed subclinical hearing loss at high frequency that is likely HP-ß-CD related. Plasma 24-(S)-hydroxycholesterol, a pharmacodynamic biomarker for cholesterol redistribution in the central nervous system, was significantly increased in response to each of the first 5 drug administrations. Further dosing as well as dose escalations are needed to more completely ascertain the safety and efficacy of intrathecal HP-ß-CD.


Assuntos
Excipientes/uso terapêutico , Injeções Espinhais , Doença de Niemann-Pick Tipo C/tratamento farmacológico , beta-Ciclodextrinas/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina , Biomarcadores/sangue , Criança , Progressão da Doença , Excipientes/administração & dosagem , Excipientes/efeitos adversos , Movimentos Oculares , Audição/efeitos dos fármacos , Perda Auditiva , Humanos , Hidroxicolesteróis/sangue , Masculino , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/fisiopatologia , beta-Ciclodextrinas/administração & dosagem , beta-Ciclodextrinas/efeitos adversos
18.
J Lipid Res ; 55(7): 1537-48, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24868096

RESUMO

2-Hydroxypropyl-ß-cyclodextrin (HP-ß-CD), a widely used excipient for drug formulation, has emerged as an investigational new drug for the treatment of Niemann-Pick type C1 (NPC1) disease, a neurodegenerative cholesterol storage disorder. Development of a sensitive quantitative LC-MS/MS assay to monitor the pharmacokinetics (PKs) of HP-ß-CD required for clinical trials has been challenging owing to the dispersity of the HP-ß-CD. To support a phase 1 clinical trial for ICV delivery of HP-ß-CD in NPC1 patients, novel methods for quantification of HP-ß-CD in human plasma and cerebrospinal fluid (CSF) using LC-MS/MS were developed and validated: a 2D-LC-in-source fragmentation-MS/MS (2D-LC-IF-MS/MS) assay and a reversed phase ultra performance LC-MS/MS (RP-UPLC-MS/MS) assay. In both assays, protein precipitation and "dilute and shoot" procedures were used to process plasma and CSF, respectively. The assays were fully validated and in close agreement, and allowed determination of PK parameters for HP-ß-CD. The LC-MS/MS methods are ∼100-fold more sensitive than the current HPLC assay, and were successfully employed to analyze HP-ß-CD in human plasma and CSF samples to support the phase 1 clinical trial of HP-ß-CD in NPC1 patients.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/sangue , 2-Hidroxipropil-beta-Ciclodextrina/líquido cefalorraquidiano , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino
19.
J Biol Chem ; 288(5): 2923-32, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23250746

RESUMO

Macrophages play a key role in host defense and in tissue repair after injury. Emerging evidence suggests that macrophage dysfunction in states of lipid excess can contribute to the development of insulin resistance and may underlie inflammatory complications of diabetes. Ceramides are sphingolipids that modulate a variety of cellular responses including cell death, autophagy, insulin signaling, and inflammation. In this study we investigated the intersection between TLR4-mediated inflammatory signaling and saturated fatty acids with regard to ceramide generation. Primary macrophages treated with lipopolysaccharide (LPS) did not produce C16 ceramide, whereas palmitate exposure led to a modest increase in this sphingolipid. Strikingly, the combination of LPS and palmitate led to a synergistic increase in C16 ceramide. This response occurred via cross-talk at the level of de novo ceramide synthesis in the ER. The synergistic response required TLR4 signaling via MyD88 and TIR-domain-containing adaptor-inducing interferon beta (TRIF), whereas palmitate-induced ceramide production occurred independent of these inflammatory molecules. This ceramide response augmented IL-1ß and TNFα release, a process that may contribute to the enhanced inflammatory response in metabolic diseases characterized by dyslipidemia.


Assuntos
Ceramidas/biossíntese , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Palmitatos/farmacologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Extratos Celulares , Células Cultivadas , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Esfingolipídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
J Biol Chem ; 288(50): 35703-13, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24174535

RESUMO

Mobilization of plasma membrane (PM) cholesterol to the endoplasmic reticulum is essential for cellular cholesterol homeostasis. The mechanisms regulating this retrograde, intermembrane cholesterol transfer are not well understood. Because mutant cells with defects in PM to endoplasmic reticulum cholesterol trafficking can be isolated on the basis of resistance to amphotericin B, we conducted an amphotericin B loss-of-function screen in Chinese hamster ovary (CHO) cells using insertional mutagenesis to identify genes that regulate this trafficking mechanism. Mutant line A1 displayed reduced cholesteryl ester formation from PM-derived cholesterol and increased de novo cholesterol synthesis, indicating a deficiency in retrograde cholesterol transport. Genotypic analysis revealed that the A1 cell line contained one disrupted allele of the U60 small nucleolar RNA (snoRNA) host gene, resulting in haploinsufficiency of the box C/D snoRNA U60. Complementation and mutational studies revealed the U60 snoRNA to be the essential feature from this locus that affects cholesterol trafficking. Lack of alteration in predicted U60-mediated site-directed methylation of 28 S rRNA in the A1 mutant suggests that the U60 snoRNA modulates cholesterol trafficking by a mechanism that is independent of this canonical function. Our study adds to a growing body of evidence for participation of small noncoding RNAs in cholesterol homeostasis and is the first to implicate a snoRNA in this cellular function.


Assuntos
Colesterol/metabolismo , Espaço Intracelular/metabolismo , RNA Nucleolar Pequeno/genética , Anfotericina B/farmacologia , Animais , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Loci Gênicos/genética , Haploinsuficiência/efeitos dos fármacos , Haploinsuficiência/genética , Humanos , Espaço Intracelular/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Mutação , Fosfatidilcolinas/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ratos , Ribonucleoproteínas Nucleolares Pequenas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa