RESUMO
Triplet pairing in Sr_{2}RuO_{4} was initially suggested based on the hypothesis of strong ferromagnetic spin fluctuations. Using polarized inelastic neutron scattering, we accurately determine the full spectrum of spin fluctuations in Sr_{2}RuO_{4}. Besides the well-studied incommensurate magnetic fluctuations, we do find a sizable quasiferromagnetic signal, quantitatively consistent with all macroscopic and microscopic probes. We use this result to address the possibility of magnetically driven triplet superconductivity in Sr_{2}RuO_{4}. We conclude that, even though the quasiferromagnetic signal is stronger and sharper than previously anticipated, spin fluctuations alone are not enough to generate a triplet state strengthening the need for additional interactions or an alternative pairing scenario.
RESUMO
The magnon dispersion of ferromagnetic SrRuO_{3} was studied by inelastic neutron scattering experiments on single crystals as a function of temperature. Even at low temperature the magnon modes exhibit substantial broadening pointing to strong interaction with charge carriers. We find an anomalous temperature dependence of both the magnon gap and the magnon stiffness, which soften upon cooling in the ferromagnetic phase. Both effects trace the temperature dependence of the anomalous Hall effect and can be attributed to the impact of Weyl points, which results in the same relative renormalization in the spin stiffness and magnon gap.
RESUMO
In iron-based superconductors the interactions driving the nematic order (that breaks four-fold rotational symmetry in the iron plane) may also mediate the Cooper pairing. The experimental determination of these interactions, which are believed to depend on the orbital or the spin degrees of freedom, is challenging because nematic order occurs at, or slightly above, the ordering temperature of a stripe magnetic phase. Here, we study FeSe (ref. )-which exhibits a nematic (orthorhombic) phase transition at Ts = 90 K without antiferromagnetic ordering-by neutron scattering, finding substantial stripe spin fluctuations coupled with the nematicity that are enhanced abruptly on cooling through Ts. A sharp spin resonance develops in the superconducting state, whose energy (â¼4 meV) is consistent with an electron-boson coupling mode revealed by scanning tunnelling spectroscopy. The magnetic spectral weight in FeSe is found to be comparable to that of the iron arsenides. Our results support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.
RESUMO
Inelastic neutron scattering experiments on Sr_{2}RuO_{4} determine the spectral weight of the nesting induced magnetic fluctuations across the superconducting transition. There is no observable change at the superconducting transition down to an energy of â¼0.35 meV, which is well below the 2Δ values reported in several tunneling experiments. At this and higher energies magnetic fluctuations clearly persist in the superconducting state. Only at energies below â¼0.3 meV can evidence for partial suppression of spectral weight in the superconducting state be observed. This strongly suggests that the one-dimensional bands with the associated nesting fluctuations do not form the active, highly gapped bands in the superconducting pairing in Sr_{2}RuO_{4}.
RESUMO
We use neutron scattering to study magnetic excitations near the antiferromagnetic wave vector in the underdoped single-layer cuprate HgBa_{2}CuO_{4+δ} (superconducting transition temperature T_{c}≈88 K, pseudogap temperature T^{*}≈220 K). The response is distinctly enhanced below T^{*} and exhibits a Y-shaped dispersion in the pseudogap state, whereas the superconducting state features an X-shaped (hourglass) dispersion and a further resonancelike enhancement. A large spin gap of about 40 meV is observed in both states. This phenomenology is reminiscent of that exhibited by bilayer cuprates. The resonance spectral weight, irrespective of doping and compound, scales linearly with the putative binding energy of a spin exciton described by an itinerant-spin formalism.
RESUMO
The elucidation of the pseudogap phenomenon of the high-transition-temperature (high-T(c)) copper oxides-a set of anomalous physical properties below the characteristic temperature T* and above T(c)-has been a major challenge in condensed matter physics for the past two decades. Following initial indications of broken time-reversal symmetry in photoemission experiments, recent polarized neutron diffraction work demonstrated the universal existence of an unusual magnetic order below T* (refs 3, 4). These findings have the profound implication that the pseudogap regime constitutes a genuine new phase of matter rather than a mere crossover phenomenon. They are furthermore consistent with a particular type of order involving circulating orbital currents, and with the notion that the phase diagram is controlled by a quantum critical point. Here we report inelastic neutron scattering results for HgBa(2)CuO(4+δ) that reveal a fundamental collective magnetic mode associated with the unusual order, and which further support this picture. The mode's intensity rises below the same temperature T* and its dispersion is weak, as expected for an Ising-like order parameter. Its energy of 52-56 meV renders it a new candidate for the hitherto unexplained ubiquitous electron-boson coupling features observed in spectroscopic studies.
RESUMO
The pseudogap region of the phase diagram is an important unsolved puzzle in the field of high-transition-temperature (high-T(c)) superconductivity, characterized by anomalous physical properties. There are open questions about the number of distinct phases and the possible presence of a quantum-critical point underneath the superconducting dome. The picture has remained unclear because there has not been conclusive evidence for a new type of order. Neutron scattering measurements for YBa(2)Cu(3)O(6+delta) (YBCO) resulted in contradictory claims of no and weak magnetic order, and the interpretation of muon spin relaxation measurements on YBCO and of circularly polarized photoemission experiments on Bi(2)Sr(2)CaCu(2)O(8+delta)(refs 12, 13) has been controversial. Here we use polarized neutron diffraction to demonstrate for the model superconductor HgBa(2)CuO(4+delta) (Hg1201) that the characteristic temperature T* marks the onset of an unusual magnetic order. Together with recent results for YBCO, this observation constitutes a demonstration of the universal existence of such a state. The findings appear to rule out theories that regard T* as a crossover temperature rather than a phase transition temperature. Instead, they are consistent with a variant of previously proposed charge-current-loop order that involves apical oxygen orbitals, and with the notion that many of the unusual properties arise from the presence of a quantum-critical point.
RESUMO
The incommensurate stripelike magnetic ordering in two single-layered manganites, Nd0.33Sr1.67MnO4 and Pr0.33Ca1.67MnO4, is found to exhibit an hourglasslike excitation spectrum very similar to that seen in various cuprates superconductors, but only for sufficiently short correlation lengths. Several characteristic features of an hourglass dispersion can be identified: enhancement of intensity at the merging of the incommensurate branches, rotation of the intensity maxima with higher energy transfer, and suppression of the outward-dispersing branches at low energy. The correlation length of the magnetic ordering and the large ratio of intra- to interstripe couplings are identified as the decisive parameters causing the hourglass shape of the spectrum.
RESUMO
Magnetic correlations in superconducting LiFeAs were studied by elastic and by inelastic neutron-scattering experiments. There is no indication for static magnetic ordering, but inelastic correlations appear at the incommensurate wave vector (0.5±Î´,0.5-/+δ,0) with δ~0.07 slightly shifted from the commensurate ordering observed in other FeAs-based compounds. The incommensurate magnetic excitations respond to the opening of the superconducting gap by a transfer of spectral weight.
RESUMO
Overdoped La0.42Sr1.58MnO4 exhibits a complex ordering of charges, orbitals, and spins. Neutron diffraction experiments reveal three incommensurate and one commensurate order parameters to be tightly coupled. The position and the shape of the distinct superstructure scattering as well as higher-order signals are inconsistent with a harmonic charge and spin-density-wave picture but point to a stripe arrangement in which ferromagnetic zigzag chains are disrupted by excess Mn(4+).
RESUMO
In high-temperature copper oxide superconductors, a novel magnetic order associated with the pseudogap phase has been identified in two different cuprate families over a wide region of temperature and doping. We report here the observation below 120 K of a similar magnetic ordering in the archetypal cuprate La(2-x)Sr(x)CuO4 (LSCO) system for x=0.085. In contrast with the previous reports, the magnetic ordering in LSCO is only short range with an in-plane correlation length of â¼10 A and is bidimensional (2D). Such a less pronounced order suggests an interaction with other electronic instabilities. In particular, LSCO also exhibits a strong tendency towards stripes ordering at the expense of the superconducting state.
RESUMO
We report an inelastic-neutron-scattering and muon-spin-relaxation study of the effect of 2% spinless (Zn) impurities on the magnetic order and dynamics of YBa(2)Cu(3)O(6.6), an underdoped high-temperature superconductor that exhibits a prominent spin pseudogap in its normal state. Zn substitution induces static magnetic order at low temperatures and triggers a large-scale spectral-weight redistribution from the magnetic resonant mode at 38 meV into uniaxial, incommensurate spin excitations with energies well below the spin pseudogap. These observations indicate a competition between incommensurate magnetic order and superconductivity close to a quantum critical point. Comparison to prior data on La(2-x)Sr(x)CuO(4) suggests that this behavior is universal for the layered copper oxides and analogous to impurity-induced magnetic order in one-dimensional quantum magnets.
RESUMO
The desire to maximize the sensitivity of read/write heads (and thus the information density) of magnetic storage devices has stimulated interest in the discovery and design of new magnetic materials exhibiting magnetoresistance. Recent discoveries include the 'colossal' magnetoresistance in the manganites and the enhanced magnetoresistance in low-carrier-density ferromagnets. An important feature of these systems is that the electrons involved in electrical conduction are different from those responsible for the magnetism. The latter are localized and act as scattering sites for the mobile electrons, and it is the field tuning of the scattering strength that ultimately gives rise to the observed magnetoresistance. Here we argue that magnetoresistance can arise by a different mechanism in certain ferromagnets--quantum interference effects rather than simple scattering. The ferromagnets in question are disordered, low-carrier-density magnets where the same electrons are responsible for both the magnetic properties and electrical conduction. The resulting magnetoresistance is positive (that is, the resistance increases in response to an applied magnetic field) and only weakly temperature-dependent below the Curie point.
RESUMO
The fundamental building block of the copper oxide superconductors is a Cu4O4 square plaquette. The plaquettes in most of these materials are slightly distorted to form a rectangular lattice, for which an influential theory predicts that high-transition-temperature (high-T(c)) superconductivity is nucleated in 'stripes' aligned along one of the axes. This theory received strong support from experiments that indicated a one-dimensional character for the magnetic excitations in the high-T(c) material YBa2Cu3O6.6 (ref. 4). Here we report neutron scattering data on 'untwinned' YBa2Cu3O6+x crystals, in which the orientation of the rectangular lattice is maintained throughout the entire volume. Contrary to the earlier claim, we demonstrate that the geometry of the magnetic fluctuations is two-dimensional. Rigid stripe arrays therefore appear to be ruled out over a wide range of doping levels in YBa2Cu3O6+x, but the data may be consistent with liquid-crystalline stripe order. The debate about stripes has therefore been reopened.
RESUMO
The mechanism of Cooper pair formation in iron-based superconductors remains a controversial topic. The main question is whether spin or orbital fluctuations are responsible for the pairing mechanism. To solve this problem, a crucial clue can be obtained by examining the remarkable enhancement of magnetic neutron scattering signals appearing in a superconducting phase. The enhancement is called spin resonance for a spin fluctuation model, in which their energy is restricted below twice the superconducting gap value (2Δs), whereas larger energies are possible in other models such as an orbital fluctuation model. Here we report the doping dependence of low-energy magnetic excitation spectra in Ba1-xKxFe2As2 for 0.5 < x < 0.84 studied by inelastic neutron scattering. We find that the behavior of the spin resonance dramatically changes from optimum to overdoped regions. Strong resonance peaks are observed clearly below 2Δs in the optimum doping region, while they are absent in the overdoped region. Instead, there is a transfer of spectral weight from energies below 2Δs to higher energies, peaking at values of 3Δs for x = 0.84. These results suggest a reduced impact of magnetism on Cooper pair formation in the overdoped region.
RESUMO
Antiferromagnetic correlations have been argued to be the cause of the d-wave superconductivity and the pseudogap phenomena exhibited by the cuprates. Although the antiferromagnetic response in the pseudogap state has been reported for a number of compounds, there exists no information for structurally simple HgBa2CuO(4+δ). Here we report neutron-scattering results for HgBa2CuO(4+δ) (superconducting transition temperature Tc≈71 K, pseudogap temperature T*≈305 K) that demonstrate the absence of the two most prominent features of the magnetic excitation spectrum of the cuprates: the X-shaped 'hourglass' response and the resonance mode in the superconducting state. Instead, the response is Y-shaped, gapped and significantly enhanced below T*, and hence a prominent signature of the pseudogap state.
RESUMO
The pseudo-gap phenomenon in copper oxide superconductors is central to any description of these materials as it prefigures the superconducting state itself. A magnetic intra-unit-cell order was found to occur just at the pseudo-gap temperature in four cuprate high-Tc superconducting families. Here we present polarized neutron-scattering measurements of nearly optimally doped YBa2Cu3O6.85, carried out on two different spectrometers, that reveal several features. The intra-unit-cell order consists of finite-sized planar domains that are very weakly correlated along the c axis. At high temperature, only the out-of-plane magnetic components correlate, indicating a strong Ising anisotropy. An aditional in-plane response develops at low temperature, giving rise to an apparent tilt of the magnetic moment. The discovery of these two regimes puts stringent constraints, which are tightly bound to the pseudo-gap physics, on the intrinsic nature of intra-unit-cell order.
RESUMO
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths.
RESUMO
Several growth factors and cytokines have been proposed to act through signaling pathways related by their dependence on tyrosine phosphorylation of latent transcription factors, and their use of similar transcription factor binding sites. Related mechanisms have previously not been reported for prolactin, growth hormone, or any other glandular hormone. We have identified sequences in the annexin Icp35 gene that are related to regulatory sequences in mammary gland milk protein genes, and then used DNA binding assays to show that PRL induces transient expression of factors specific for these sequences. The sequences in question are partially related to the core homology of the interferon (IFN)gamma-activated sequence (GAS). Considering that the prolactin-regulated factors might be related to the p91 component of IFN gamma-activated factor, we used immunoassays to show that prolactin induced tyrosine phosphorylation of a protein that comigrated with immunoreactive relatives of p91, and that antibody to p91 specifically interfered with the prolactin-induced binding activity on the annexin Icp35 gene.