Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34864885

RESUMO

To better understand the potential of drug repurposing in COVID-19, we analyzed control strategies over essential host factors for SARS-CoV-2 infection. We constructed comprehensive directed protein-protein interaction (PPI) networks integrating the top-ranked host factors, the drug target proteins and directed PPI data. We analyzed the networks to identify drug targets and combinations thereof that offer efficient control over the host factors. We validated our findings against clinical studies data and bioinformatics studies. Our method offers a new insight into the molecular details of the disease and into potentially new therapy targets for it. Our approach for drug repurposing is significant beyond COVID-19 and may be applied also to other diseases.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Biologia Computacional , Reposicionamento de Medicamentos , Mapas de Interação de Proteínas , SARS-CoV-2 , Antivirais/química , Antivirais/farmacocinética , COVID-19/genética , COVID-19/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
2.
Cytometry A ; 75(3): 236-44, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19061248

RESUMO

Human red blood cells (RBCs) have a normal life span of 120 days in vivo and might be primed in vitro to die in response to apoptotic stimuli through a caspase-independent pathway. It is well known that, in vivo, aging RBCs externalize phosphatidylserine residues but is unknown whether these cells express active caspases at this stage. We isolated RBCs expressing phosphatidylserine on their surface from human blood by applying an original method of affinity chromatography using annexin-V fixed on gelatin or on magnetic beads. The isolated RBCs were then analyzed by flow cytometry for morphological changes (dot-plot forward scatter versus side scatter), phosphatidylserine externalization (annexin-V test), cell viability (calcein-AM test), and caspase activities using fluorescent substrates specific for caspases-3 and -8. In addition, cells were systematically visualized using phase contrast, fluorescence, and confocal microscopy. We found that the population of RBCs fixed on annexin-V is a mixture of discocytes and shrunken cells. This annexin-V-positive population showed a dramatic loss of viability based on esterase activity determination (calcein-AM test). Moreover, we demonstrated that circulating RBCs express both active caspases-8 and -3 in half of the annexin-V-positive cells. All of these results were confirmed by phase contrast, fluorescence, and confocal microscopy. Our results demonstrate active caspases in RBC isolated from blood suggesting that caspases may participate in the regulation of in vivo RBC half-life. This finding open the door to fruitful investigations in the field of RBC pathology.


Assuntos
Anexina A5/metabolismo , Caspase 3/sangue , Caspase 8/sangue , Separação Celular/métodos , Eritrócitos/enzimologia , Citometria de Fluxo/métodos , Anexina A5/química , Cromatografia de Afinidade , Humanos , Microscopia de Fluorescência
3.
Sci Total Environ ; 572: 1297-1306, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26774132

RESUMO

The Danube River-Danube Delta-Black Sea (DBS) region has witnessed major political, social and economic changes during the past three decades, which have profoundly affected the riverine, coastal and marine systems, their water management situation and the development of related research programmes. We reviewed the research activities in the DBS system of the past twenty years to determine the main funding bodies and to assess key research areas and how they varied over time and geographic region. As data basis we used a metadatabase filled with 478 projects addressing environmental and water management issues in the Danube River Basin, covering also the Danube Delta and the north-western Black Sea. As overall outcome extensive research efforts in the field of water management could be proven for the past two decades, despite the tumultuous times of political and economic transformations. One of the main findings was that EU funded projects played a key role for the development of transboundary research collaboration and were also the scientifically most productive one's. Historically, nutrient pollution was the main problem addressed, shifting to pollution in a broader sense and hydromorphological alterations in recent years. The newly arising challenges of climate change impacts and sediment management became important research questions in the last years, too. Most research was performed in the thematic field of navigation, followed by restoration and biodiversity issues. To meet all of the already identified and newly emerging challenges in the DBS System, cross-border and integrated (river-delta-sea) research activities are of major importance and have to be further promoted. We thus suggest drawing up a regional DBS Research Agenda linked to key challenges in water management to strengthen research collaboration and advance targeted scientific projects, an approach fostering also the scientific capacity in the region.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa