Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 41(7): 1309-12, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192223

RESUMO

We fabricated a microfiber interferometer with surface plasmon-polaritons (SPPs) involvement. Commonly, the SPPs are not involved in interference due to the mismatch momentum and ultrashort propagation distance. In this Letter, an absorber-doped microfiber is utilized for increasing the matched momentum (i.e., their modal projection), and as a result, an SPP is coherent with an end-fire method-stimulated hybrid SPP. A mathematical model is proposed for investigating the modal-projection-caused interference, and its results show that the proposed interferometer is very dependent on the polarization. Confirmation experiments were carried out, and a good agreement between theoretical predictions and experimental results was found. The proposed interferometer will potentially facilitate many SPP studies in directly related fields.

2.
Appl Opt ; 55(1): 63-9, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26835622

RESUMO

A novel refractive index (RI) sensor head is proposed and experimentally demonstrated in this paper. The proposed sensor head is composed of a segment of bared single-mode fiber and a fiber holder that is fabricated by a 3D printer. The mechanism of the sensor head is based on dual polarized Mach-Zehnder interference. According to the aforementioned mechanism, we derived that the RI responses of the resonance dips possess an exponential functional manner when the E field is along the fast or slow axes. In addition, based on the finite element method, we found that the resonance dips wavelength responses are more sensitive when the input E field is along the fast axis. A confirmation experiment was performed, and the results confirmed our hypothesis. The maximum arithmetic mean value of RI response is about 657.895 nm/RIU for the proposed sensor head when the ambient RI changes from 1.3350 to 1.4110. Moreover, in the case of the proposed liquid RI sensor head, aligning the E field along the fast axis is the potentially needed condition for polarization.


Assuntos
Tecnologia de Fibra Óptica/métodos , Interferometria/métodos , Fibras Ópticas , Refratometria , Eletricidade
3.
Opt Lett ; 40(15): 3448-51, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26258329

RESUMO

A photonic crystal fiber polarization rotator (PR) is proposed based on the topological Zeeman effect. The proposed PR is achieved by permanently twisting a segment of sixfold symmetric photonic crystal fiber with a matched length, and under the optimized parameters, the PR can offer an almost 100% polarization conversion ratio in the wavelength of 1.55-µm band (∼200 nm bandwidth) and a compact length of about 157 µm based on the numerical simulation result of the full-vector finite-element method. The proposed in-line PCF PR can be easily fabricated based on state-of-art PCF manufacturing, and it is a potential inexpensive candidate in the application of modern communication systems.

4.
Opt Express ; 22(26): 31654-64, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25607136

RESUMO

This paper presents a novel optical fiber torsion sensor based on dual polarized Mach-Zehnder interference (DPMZI). Unlike the conventional fiber sensor, the proposed sensor is composed of a sensor part and a demodulator. The demodulator is made by a bared single mode fiber (SMF) loop, and the sensor part is a segment of a coated SMF placed before the loop. A mathematical model is proposed based on DPMZI mechanism and from the model when the sensor part is twisted, the E-field rotational angle will bring a quasi-linear impact on the resonance dip wavelength in their matched detecting range. A proof-of-concept experiment was performed to verify the theoretical prediction. From the experimental data, a sensitivity of -0.3703, -1.00962, and -0.59881 nm•m/rad is achieved with the determining range of 12.0936, 7.6959, and 10.4444 rad/m respectively. The sensor which is composed only of the SMF has the advantages of low insertion loss (~-2dB), healthy structure, low manufacture cost, and easy assembly and application.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Interferometria/instrumentação , Modelos Teóricos , Dispositivos Ópticos , Refratometria/instrumentação , Transdutores , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Estresse Mecânico , Torque
5.
Rev Sci Instrum ; 85(7): 075002, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25085165

RESUMO

An all-fiber sensor scheme for real time and simultaneous displacement and temperature measurement is presented and demonstrated. The sensor head is formed by cascading a fiber loop with polymer coating with a fiber Bragg grating. The compatibility of the two components is fully utilized. A sensor resolution of 0.14314 V/µm in displacement and 0.00795 nm/°C in temperature are experimentally achieved within a displacement range of 0-50 µm and a temperature range of 20 °C-75 °C, respectively. The fiber loop with the protection of polymer coating is mechanically reliable, which means the sensor head also suits measuring dynamic displacement. A 500 Hz mechanical micro-vibration is successfully measured by the proposed sensor experimentally. In the last part, we perform a test making the sensor reach its maximum deformation and find the surviving sensor still possesses the same responsiveness as before.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa