RESUMO
The fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the Klotho gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD. Here, we explored the structure-function relationship and post-translational modifications of sKlotho variants to guide the future design of sKlotho-based therapeutics. Chinese hamster ovary (CHO)- and human embryonic kidney (HEK)-derived WT sKlotho proteins had varied activities in FGF23 co-receptor and ß-glucuronidase assays in vitro and distinct properties in vivo Sialidase treatment of heavily sialylated CHO-sKlotho increased its co-receptor activity 3-fold, yet it remained less active than hyposialylated HEK-sKlotho. MS and glycopeptide-mapping analyses revealed that HEK-sKlotho is uniquely modified with an unusual N-glycan structure consisting of N,N'-di-N-acetyllactose diamine at multiple N-linked sites, one of which at Asn-126 was adjacent to a putative GalNAc transfer motif. Site-directed mutagenesis and structural modeling analyses directly implicated N-glycans in Klotho's protein folding and function. Moreover, the introduction of two catalytic glutamate residues conserved across glycosidases into sKlotho enhanced its glucuronidase activity but decreased its FGF23 co-receptor activity, suggesting that these two functions might be structurally divergent. These findings open up opportunities for rational engineering of pharmacologically enhanced sKlotho therapeutics for managing kidney disease.
Assuntos
Glucuronidase/metabolismo , Insuficiência Renal Crônica/patologia , Animais , Células CHO , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Fator de Crescimento de Fibroblastos 23 , Taxa de Filtração Glomerular/efeitos dos fármacos , Glucuronidase/química , Glucuronidase/genética , Glicopeptídeos/análise , Células HEK293 , Meia-Vida , Humanos , Proteínas Klotho , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/veterinária , Relação Estrutura-AtividadeRESUMO
Human growth hormone was conjugated to a carrier aldolase antibody, using a novel linker by connecting a disulphide bond in growth hormone to a lysine-94 amine located on the Fab arm of the antibody. The resulting CovX body showed reduced affinity towards human growth hormone receptor, reduced cell-based activity, but improved pharmacodynamic properties. We have demonstrated that this CovX-body, given once a week, showed comparable activity as growth hormone given daily in an in vivo hypophysectomized rat model.
Assuntos
Desenho de Fármacos , Hormônio do Crescimento Humano/análogos & derivados , Hormônio do Crescimento Humano/administração & dosagem , Animais , Anticorpos/metabolismo , Cristalografia por Raios X , Modelos Animais de Doenças , Esquema de Medicação , Frutose-Bifosfato Aldolase/metabolismo , Humanos , Hipofisectomia , Modelos Moleculares , Estrutura Molecular , Ratos , Fatores de TempoRESUMO
The development time of therapeutic monoclonal antibodies (mAbs) has been shortened by formulation platforms and the assessment of 'protein stability' using 'developability' assays. A range of assays are used to measure stability to a variety of stresses, including forces induced by hydrodynamic flow. We have previously developed a low-volume Extensional Flow Device (EFD) which subjects proteins to defined fluid flow fields in the presence of glass interfaces and used it to identify robust candidate sequences. Here, we study the aggregation of mAbs and Fc-fusion proteins using the EFD and orbital shaking under different formulations, investigating the relationship between these assays and evaluating their potential in formulation optimisation. EFD experiments identified the least aggregation-prone molecule using a fraction of the material and time involved in traditional screening. We also show that the EFD can differentiate between different formulations and that protective formulations containing polysorbate 80 stabilised poorly developable Fc-fusion proteins against EFD-induced aggregation up to two-fold. Our work highlights common platform formulation additives that affect the extent of aggregation under EFD-stress, as well as identifying factors that modulate the underlying aggregation mechanism. Together, our data could aid the choice of platform formulations early in development for next-generation therapeutics including fusion proteins.
RESUMO
Site specific integration (SSI) expression systems offer robust means of generating highly productive and stable cell lines for traditional monoclonal antibodies. As complex modalities such as antibody-like molecules comprised of greater than two peptides become more prevalent, greater emphasis needs to be placed on the ability to produce appreciable quantities of the correct product of interest (POI). The ability to screen several transcript stoichiometries could play a large role in ensuring high amounts of the correct POI. Here we illustrate implementation of an SSI expression system with a single site of integration for development and production of a multi-chain, bi-specific molecule. A SSI vector with a single copy of all of the genes of interest was initially selected for stable Chinese hamster ovary transfection. While the resulting transfection pools generated low levels of the desired heterodimer, utilizing an intensive clone screen strategy, we were able to identify clones having significantly higher levels of POI. In-depth genotypic characterization of clones having the desirable phenotype revealed that a duplication of the light chain within the landing pad was responsible for producing the intended molecule. Retrospective transfection pool analysis using a vector configuration mimicking the transgene configuration found in the clones, as well as other vector configurations, yielded more favorable results with respect to % POI. Overall, the study demonstrated that despite the theoretical static nature of the SSI expression system, enough heterogeneity existed to yield clones having significantly different transgene phenotypes/genotypes and support production of a complex multi-chain molecule.
Assuntos
Cricetulus , Animais , Células CHO , Cricetinae , Proteínas Recombinantes/genética , Estudos Retrospectivos , Transfecção , TransgenesRESUMO
GDF15 is a distant TGF-ß family member that induces anorexia and weight loss. Due to its function, GDF15 has attracted attention as a potential therapeutic for the treatment of obesity and its associated metabolic diseases. However, the pharmacokinetic and physicochemical properties of GDF15 present several challenges for its development as a therapeutic, including a short half-life, high aggregation propensity, and protease susceptibility in serum. Here, we report the design, characterization and optimization of GDF15 in an Fc-fusion protein format with improved therapeutic properties. Using a structure-based engineering approach, we combined knob-into-hole Fc technology and N-linked glycosylation site mutagenesis for half-life extension, improved solubility and protease resistance. In addition, we identified a set of mutations at the receptor binding site of GDF15 that show increased GFRAL binding affinity and led to significant half-life extension. We also identified a single point mutation that increases p-ERK signaling activity and results in improved weight loss efficacy in vivo. Taken together, our findings allowed us to develop GDF15 in a new therapeutic format that demonstrates better efficacy and potential for improved manufacturability.
Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Redução de Peso/efeitos dos fármacos , Animais , Células CHO , Cricetulus , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Glicosilação , Humanos , Camundongos , Mutação Puntual , Engenharia de ProteínasRESUMO
Large-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.e., less aggregation) than those from HEK293. Green fluorescent protein imaging data indicated that ExpiCHO-S™ displayed a delayed but prolonged transient protein expression process compared to HEK293. When therapeutic glycoproteins containing non-Fc N-linked glycans were expressed in transient ExpiCHO-S™, the glycan pattern was unexpectedly found to have few sialylated N-glycans, in contrast to glycans produced within a stable CHO expression system. To improve N-glycan sialylation in transient ExpiCHO-S™, we co-transfected galactosyltransferase and sialyltransferase genes along with the target genes, as well as supplemented the culture medium with glycan precursors. The authors have demonstrated that co-transfection of glycosyltransferases combined with medium addition of galactose and uridine led to increased sialylation content of N-glycans during transient ExpiCHO-S™ expression. These results have provided a scientific basis for developing a future transient CHO system with N-glycan compositions that are similar to those profiles obtained from stable CHO protein production systems. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2724, 2019.
Assuntos
Formação de Anticorpos/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Células HEK293 , Humanos , Polissacarídeos/metabolismoRESUMO
Pharmacological administration of FGF21 analogues has shown robust body weight reduction and lipid profile improvement in both dysmetabolic animal models and metabolic disease patients. Here we report the design, optimization, and characterization of a long acting glyco-variant of FGF21. Using a combination of N-glycan engineering for enhanced protease resistance and improved solubility, Fc fusion for further half-life extension, and a single point mutation for improving manufacturability in Chinese Hamster Ovary cells, we created a novel FGF21 analogue, Fc-FGF21[R19V][N171] or PF-06645849, with substantially improved solubility and stability profile that is compatible with subcutaneous (SC) administration. In particular, it showed a low systemic clearance (0.243 mL/hr/kg) and long terminal half-life (~200 hours for intact protein) in cynomolgus monkeys that approaches those of monoclonal antibodies. Furthermore, the superior PK properties translated into robust improvement in glucose tolerance and the effects lasted 14 days post single SC dose in ob/ob mice. PF-06645849 also caused greater body weight loss in DIO mice at lower and less frequent SC doses, compared to previous FGF21 analogue PF-05231023. In summary, the overall PK/PD and pharmaceutical profile of PF-06645849 offers great potential for development as weekly to twice-monthly SC administered therapeutic for chronic treatment of metabolic diseases.
Assuntos
Fatores de Crescimento de Fibroblastos/farmacocinética , Animais , Células CHO , Cricetinae , Cricetulus , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/química , Glicosilação , Células HEK293 , Humanos , Injeções Subcutâneas , Macaca fascicularis , Taxa de Depuração Metabólica , Camundongos , Estabilidade Proteica , Proteólise , Distribuição TecidualRESUMO
To aid in the pursuit of selective kinase inhibitors, we have developed a unique ATP site binder tool for the detection of binders outside the ATP site by nuclear magnetic resonance (NMR). We report here the novel synthesis that led to this paramagnetic spin-labeled pyrazolopyrimidine probe (1), which exhibits nanomolar inhibitory activity against multiple kinases. We demonstrate the application of this probe by performing NMR binding experiments with Lck and Src kinases and utilize it to detect the binding of two compounds proximal to the ATP site. The complex structure of the probe with Lck is also presented, revealing how the probe fits in the ATP site and the specific interactions it has with the protein. We believe that this spin-labeled probe is a valuable tool that holds broad applicability in a screen for non-ATP site binders.
Assuntos
Trifosfato de Adenosina/metabolismo , Espectroscopia de Ressonância Magnética , Inibidores de Proteínas Quinases/síntese química , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Marcadores de Spin/síntese química , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologiaRESUMO
Orotidine 5'-monophosphate decarboxylase has been heavily examined in recent years due to its enzymatic proficiency, which provides a catalytic enhancement to a reaction rate approximately 1017 times greater than that of the nonenzymatic reaction. Several mechanisms proposed to explain this catalytic enhancement have included covalent addition, ylide or carbene formation, and most recently concerted protonation. All of these mechanisms have circumvented the formation of a high-energy vinyl anionic intermediate. To investigate the presence of an anionic intermediate, 13C isotope effect studies have been performed using the alternate substrate 5-fluoro-OMP (OMP = orotidine 5'-monophosphate). Isotope effects obtained for the wild-type enzyme with OMP and 5-fluoro-OMP are 1.0255 and 1.0106, respectively, corresponding to a decrease of approximately 1.5% for 5-fluoro-OMP. With the K59A enzyme, the intrinisic isotope effects show a similar decrease of approximately 1.9% from 1.0543 with OMP to 1.0356 with 5-fluoro-OMP. This decrease results from the inductive effect of the fluorine, which stabilizes the carbanion intermediate by electron withdrawal and produces a reaction with an earlier transition state. The isotope effect for the decarboxylation of the slow substrate 2'-deoxy-OMP produced a intrinsic isotope effect of nearly 1.0461.
Assuntos
Orotidina-5'-Fosfato Descarboxilase/química , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Sítios de Ligação , Isótopos de Carbono , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação ProteicaRESUMO
The second order rate constant (k(cat)/K(m)) for decarboxylation of orotidine by yeast OMP decarboxylase (ODCase), measured by trapping (14)CO(2) released during the reaction, is 2 x 10(-4)M(-1)s(-1). This very low activity may be compared with a value of 3 x 10(7)M(-1)s(-1) for the action of yeast OMP decarboxylase on the normal substrate OMP. Both activities are strongly inhibited by 6-hydroxy UMP (BMP), and abrogated by mutation of Asp-96 to alanine. These results, in conjunction with the binding affinity of inorganic phosphate as a competitive inhibitor (K(i)=7 x 10(-4)M), imply an effective concentration of 1.1 x 10(9)M for the substrate phosphoryl group in stabilizing the transition state for enzymatic decarboxylation of OMP. The observed difference in rate (1.5 x 10(11)-fold) is the largest effect of a simple substituent that appears to have been reported for an enzyme reaction.
Assuntos
Orotidina-5'-Fosfato Descarboxilase/química , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Fosfatos/metabolismo , Uridina/análogos & derivados , Alanina/química , Ácido Aspártico/química , Ligação Competitiva , Descarboxilação , Estrutura Molecular , Mutação , Fosfatos/química , Saccharomyces cerevisiae/enzimologia , Especificidade por Substrato , Fatores de Tempo , Uridina/química , Uridina/metabolismoRESUMO
There has been some speculation that the C-6 position in UMP may be unusually acidic, stabilizing a carbanion that is generated at this position during OMP decarboxylation. On the basis of the rate of OH- catalyzed deuterium exchange at elevated temperatures we estimate that the pKa value for ionization at C-6 of dimethyl uracil is 34 +/- 2 in water. The same method yields a value of 37 +/- 2 for ionization at C-2 of thiophene in good agreement with the value determined by polarographic methods. The barrier to proton release (46 kcal/mol) is even higher than that for CO2 release from orotic acid derivatives.
Assuntos
Orotidina-5'-Fosfato Descarboxilase/metabolismo , Uracila/análogos & derivados , Uridina Monofosfato/metabolismo , Deutério/química , Temperatura Alta , Cinética , Orotidina-5'-Fosfato Descarboxilase/química , Uracila/química , Uracila/metabolismo , Uridina Monofosfato/químicaRESUMO
To determine the effectiveness of the ribosome as a catalyst, we compared the rate of uncatalyzed peptide bond formation, by the reaction of the ethylene glycol ester of N-formylglycine with Tris(hydroxymethyl)aminomethane, with the rate of peptidyl transfer by the ribosome. Activation parameters were also determined for both reactions, from the temperature dependence of their second-order rate constants. In contrast with most protein enzymes, the enthalpy of activation is slightly less favorable on the ribosome than in solution. The 2 x 10(7)-fold rate enhancement produced by the ribosome is achieved entirely by lowering the entropy of activation. These results are consistent with the view that the ribosome enhances the rate of peptide bond formation mainly by positioning the substrates and/or water exclusion within the active site, rather than by conventional chemical catalysis.